已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning to assess right ventricular ejection fraction from two‐dimensional echocardiograms in precapillary pulmonary hypertension

心脏病学 医学 内科学 射血分数 肺动脉高压 后负荷 心脏磁共振成像 心脏磁共振 磁共振成像 心室 放射科 心力衰竭
作者
Michito Murayama,Hiroyuki Sugimori,Takaaki Yoshimura,Sanae Kaga,Hideki Shima,Satonori Tsuneta,Aoi Mukai,Yui Nagai,Shinobu Yokoyama,Hisao Nishino,Junichi Nakamura,Takahiro Sato,Ichizo Tsujino
出处
期刊:Echocardiography-a Journal of Cardiovascular Ultrasound and Allied Techniques [Wiley]
卷期号:41 (4): e15812-e15812 被引量:8
标识
DOI:10.1111/echo.15812
摘要

Abstract Background Precapillary pulmonary hypertension (PH) is characterized by a sustained increase in right ventricular (RV) afterload, impairing systolic function. Two‐dimensional (2D) echocardiography is the most performed cardiac imaging tool to assess RV systolic function; however, an accurate evaluation requires expertise. We aimed to develop a fully automated deep learning (DL)‐based tool to estimate the RV ejection fraction (RVEF) from 2D echocardiographic videos of apical four‐chamber views in patients with precapillary PH. Methods We identified 85 patients with suspected precapillary PH who underwent cardiac magnetic resonance imaging (MRI) and echocardiography. The data was divided into training (80%) and testing (20%) datasets, and a regression model was constructed using 3D‐ResNet50. Accuracy was assessed using five‐fold cross validation. Results The DL model predicted the cardiac MRI‐derived RVEF with a mean absolute error of 7.67%. The DL model identified severe RV systolic dysfunction (defined as cardiac MRI‐derived RVEF < 37%) with an area under the curve (AUC) of .84, which was comparable to the AUC of RV fractional area change (FAC) and tricuspid annular plane systolic excursion (TAPSE) measured by experienced sonographers (.87 and .72, respectively). To detect mild RV systolic dysfunction (defined as RVEF ≤ 45%), the AUC from the DL‐predicted RVEF also demonstrated a high discriminatory power of .87, comparable to that of FAC (.90), and significantly higher than that of TAPSE (.67). Conclusion The fully automated DL‐based tool using 2D echocardiography could accurately estimate RVEF and exhibited a diagnostic performance for RV systolic dysfunction comparable to that of human readers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得20
2秒前
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
等待黎明完成签到,获得积分10
3秒前
桐桐应助大方的听露采纳,获得10
3秒前
3秒前
烟花应助浅呀呀呀采纳,获得10
4秒前
5秒前
enchanted完成签到,获得积分10
7秒前
sunshine发布了新的文献求助10
8秒前
enchanted发布了新的文献求助10
9秒前
小林同学0219完成签到 ,获得积分10
9秒前
10秒前
ZYP发布了新的文献求助10
12秒前
12秒前
万能图书馆应助sunshine采纳,获得10
13秒前
烟花应助孤独的小玉采纳,获得10
15秒前
xxw完成签到,获得积分10
18秒前
18秒前
羞涩的傲菡完成签到,获得积分10
19秒前
孙泉完成签到,获得积分10
20秒前
4652376完成签到 ,获得积分0
22秒前
酷波er应助zetro采纳,获得10
23秒前
28秒前
turui完成签到 ,获得积分10
33秒前
Crazyjmj完成签到,获得积分10
34秒前
凯圣王发布了新的文献求助10
34秒前
mumu完成签到,获得积分10
37秒前
46秒前
Re完成签到,获得积分10
47秒前
呆萌井完成签到,获得积分10
47秒前
粗心的忆山完成签到 ,获得积分10
47秒前
xky200125完成签到 ,获得积分10
48秒前
51秒前
CipherSage应助灰灰采纳,获得10
51秒前
刻苦迎波完成签到,获得积分10
52秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748007
关于积分的说明 15006238
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563542
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482258