Identification of AURKA as a Biomarker Associated with Cuproptosis and Ferroptosis in HNSCC

生物标志物 鉴定(生物学) 医学 计算生物学 癌症研究 肿瘤科 生物 遗传学 植物
作者
Xiao Jia,Jian Tian,Yueyue Fu,Y. Wang,Yang Yang,Mengzhou Zhang,Cheng Yang,Yijin Liu
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:25 (8): 4372-4372 被引量:1
标识
DOI:10.3390/ijms25084372
摘要

Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death, respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma (HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards (COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the prognostic model. The performance of the prognostic model was internally validated using single-factor COX regression, multifactor COX regression, Kaplan–Meier analysis, principal component analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples from the Gene Expression Omnibus (GEO) database for external validation. The constructed model, based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has been implicated in various cancers. To further investigate, we employed small interfering RNAs (siRNAs) to knock down AURKA expression and conducted functional experiments. The results demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
于瑜与余发布了新的文献求助10
2秒前
2秒前
元谷雪发布了新的文献求助10
2秒前
3秒前
4秒前
自然听兰发布了新的文献求助10
4秒前
Jerryis发布了新的文献求助10
5秒前
6秒前
共享精神应助李耀京采纳,获得30
6秒前
6秒前
黄诗淇完成签到,获得积分10
7秒前
7秒前
123456发布了新的文献求助10
7秒前
7秒前
漱泉枕石发布了新的文献求助10
8秒前
8秒前
Lucas应助俊逸的三毒采纳,获得10
8秒前
有风的地方完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
CodeCraft应助YY再摆烂采纳,获得10
10秒前
10秒前
wzhang发布了新的文献求助10
11秒前
12秒前
12秒前
www发布了新的文献求助10
12秒前
12秒前
夏姬宁静完成签到,获得积分10
12秒前
wisdomjun发布了新的文献求助10
12秒前
13秒前
wang发布了新的文献求助10
13秒前
hhllhh完成签到,获得积分10
13秒前
14秒前
Ruan完成签到,获得积分10
14秒前
随性发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277