Identification of AURKA as a Biomarker Associated with Cuproptosis and Ferroptosis in HNSCC

生物标志物 鉴定(生物学) 医学 计算生物学 癌症研究 肿瘤科 生物 遗传学 植物
作者
Xiao Jia,Jian Tian,Yueyue Fu,Y. Wang,Yang Yang,Mengzhou Zhang,Cheng Yang,Yijin Liu
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:25 (8): 4372-4372 被引量:1
标识
DOI:10.3390/ijms25084372
摘要

Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death, respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma (HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards (COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the prognostic model. The performance of the prognostic model was internally validated using single-factor COX regression, multifactor COX regression, Kaplan–Meier analysis, principal component analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples from the Gene Expression Omnibus (GEO) database for external validation. The constructed model, based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has been implicated in various cancers. To further investigate, we employed small interfering RNAs (siRNAs) to knock down AURKA expression and conducted functional experiments. The results demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
李健应助森森呢采纳,获得10
1秒前
Jin完成签到 ,获得积分10
2秒前
2秒前
xu发布了新的文献求助10
2秒前
红糖发糕发布了新的文献求助10
3秒前
伶俐笑翠发布了新的文献求助10
3秒前
4秒前
4秒前
Sun发布了新的文献求助10
5秒前
阳光的芯发布了新的文献求助10
5秒前
5秒前
kking发布了新的文献求助10
5秒前
6666应助一块麻糖采纳,获得10
5秒前
万能图书馆应助kk采纳,获得10
5秒前
LCX发布了新的文献求助10
6秒前
7秒前
香蕉谷芹发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
8秒前
8秒前
伶俐的夜梦完成签到,获得积分10
9秒前
如风随水完成签到,获得积分10
10秒前
Me发布了新的文献求助10
10秒前
10秒前
大仙完成签到,获得积分10
10秒前
戴院士发布了新的文献求助10
10秒前
时尚听筠完成签到,获得积分10
10秒前
善良士萧完成签到,获得积分10
11秒前
13秒前
kking完成签到,获得积分20
13秒前
杨阳洋发布了新的文献求助10
13秒前
优雅小霜发布了新的文献求助10
14秒前
chenhuiyu完成签到,获得积分10
15秒前
15秒前
贼佛的小德完成签到,获得积分20
15秒前
geed809完成签到,获得积分10
16秒前
16秒前
Sun完成签到,获得积分10
17秒前
Azzfy完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735472
求助须知:如何正确求助?哪些是违规求助? 5360845
关于积分的说明 15330104
捐赠科研通 4879619
什么是DOI,文献DOI怎么找? 2622182
邀请新用户注册赠送积分活动 1571280
关于科研通互助平台的介绍 1528116