Identification of AURKA as a Biomarker Associated with Cuproptosis and Ferroptosis in HNSCC

生物标志物 鉴定(生物学) 医学 计算生物学 癌症研究 肿瘤科 生物 遗传学 植物
作者
Xiao Jia,Jian Tian,Yueyue Fu,Y. Wang,Yang Yang,Mengzhou Zhang,Cheng Yang,Yijin Liu
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:25 (8): 4372-4372 被引量:1
标识
DOI:10.3390/ijms25084372
摘要

Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death, respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma (HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards (COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the prognostic model. The performance of the prognostic model was internally validated using single-factor COX regression, multifactor COX regression, Kaplan–Meier analysis, principal component analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples from the Gene Expression Omnibus (GEO) database for external validation. The constructed model, based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has been implicated in various cancers. To further investigate, we employed small interfering RNAs (siRNAs) to knock down AURKA expression and conducted functional experiments. The results demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秦照荃发布了新的文献求助10
刚刚
漂流的小海龟完成签到,获得积分10
1秒前
钟梓袄发布了新的文献求助10
2秒前
识途发布了新的文献求助10
2秒前
春花发布了新的文献求助30
2秒前
苹果骑士发布了新的文献求助10
2秒前
Orange应助ZMK采纳,获得10
3秒前
3秒前
桐桐应助shinn采纳,获得10
3秒前
3秒前
4秒前
面包发布了新的文献求助10
4秒前
4秒前
不吃香菜关注了科研通微信公众号
4秒前
负责中恶发布了新的文献求助20
4秒前
美妞儿~完成签到,获得积分10
4秒前
xiong0823完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
QY完成签到,获得积分10
5秒前
adai发布了新的文献求助10
6秒前
英俊的铭应助代沁采纳,获得10
6秒前
7秒前
明明完成签到,获得积分10
7秒前
王惟妙完成签到 ,获得积分10
7秒前
大模型应助yy采纳,获得10
8秒前
丘比特应助英勇海采纳,获得10
8秒前
9秒前
lyy发布了新的文献求助10
9秒前
9秒前
小陈栗子完成签到,获得积分20
9秒前
9秒前
9秒前
猕猴桃发布了新的文献求助10
10秒前
10秒前
10秒前
Jasper应助梅菜菜采纳,获得10
11秒前
小贝发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933