Wheel hub defect detection based on the DS-Cascade RCNN

卷积(计算机科学) 级联 核(代数) 职位(财务) 修剪 人工智能 计算机科学 模式识别(心理学) 计算机视觉 工程类 人工神经网络 数学 化学工程 财务 生物 组合数学 经济 农学
作者
Shuhong Cheng,Jiaxin Lu,Mutian Yang,Shijun Zhang,Yuze Xu,Dianfan Zhang,Hongbo Wang
出处
期刊:Measurement [Elsevier BV]
卷期号:206: 112208-112208 被引量:21
标识
DOI:10.1016/j.measurement.2022.112208
摘要

At present, object detection methods based on machine vision have been widely used in the field of industrial defect detection. Wheel hub defects are characterized by multiple scales and complex types. The location, size and affiliation of different defect marks are different, so it is difficult to establish an accurate wheel hub defect detection model. Therefore, a wheel nuclear hub defect detection method based on the DS-Cascade RCNN was proposed. To effectively locate multiscale s, a spatial attention mechanism was added as a wheel hub defect location enhancement module. Then deformable convolution is added, and the position and size of the convolution kernel are adjusted dynamically according to the shape of wheel defects. Finally, the pruning algorithm is used to optimize the improved model and compress the model space without losing the accuracy. The model was evaluated under the wheel dataset. Experimental results show that the proposed method can effectively detect six kinds of wheel hub defects, and the mean Average Precision (mAP) is 95.49%. Multiscale defect location and defect category estimation are realized, which meets the requirements of wheel hub detection in actual production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
serendipity发布了新的文献求助10
2秒前
2秒前
2秒前
lanren666发布了新的文献求助10
2秒前
yu发布了新的文献求助10
3秒前
英俊的铭应助xin采纳,获得10
3秒前
DING完成签到,获得积分10
3秒前
12发布了新的文献求助10
3秒前
完美冷安完成签到,获得积分10
3秒前
样子完成签到,获得积分10
3秒前
情怀应助qinglongtsmc采纳,获得10
6秒前
Cherish发布了新的文献求助10
6秒前
7秒前
隐形曼青应助zgd采纳,获得20
7秒前
8秒前
里已经完成签到,获得积分10
8秒前
酷炫的冰淇淋完成签到,获得积分20
9秒前
10秒前
脑洞疼应助emotional采纳,获得10
10秒前
10秒前
orixero应助dongbei采纳,获得10
10秒前
11秒前
11秒前
huan0802er完成签到,获得积分10
11秒前
完美世界应助懂得珍惜采纳,获得10
11秒前
LSY发布了新的文献求助10
13秒前
13秒前
凉笙墨染发布了新的文献求助10
13秒前
完美世界应助聆风采纳,获得10
14秒前
15秒前
15秒前
15秒前
lmy发布了新的文献求助10
16秒前
16秒前
16秒前
quhayley应助HC采纳,获得10
16秒前
555557发布了新的文献求助10
16秒前
17秒前
17秒前
朱文韬发布了新的文献求助10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199