A machine-learning tool to identify bistable states from calcium imaging data

双稳态 钙显像 爆裂 神经科学 细胞神经科学 计算机科学 人工智能 生物神经网络 生物系统 生物 物理 化学 量子力学 有机化学
作者
Aalok Varma,Sathvik Udupa,Mohini Sengupta,Prasanta Kumar Ghosh,Vatsala Thirumalai
标识
DOI:10.1101/2022.11.10.515941
摘要

Abstract Mapping neuronal activation using calcium imaging in vivo during behavioral tasks has advanced our understanding of nervous system function. In almost all of these studies, calcium imaging is used to infer spike probabilities since action potentials activate voltage-gated calcium channels and increase intracellular calcium levels. However, neurons not only fire action potentials, but also convey information via intrinsic dynamics such as by generating bistable membrane potential states. While a number of tools for spike inference have been developed and are currently being used, no tool exists for converting calcium imaging signals to maps of cellular state in bistable neurons. Purkinje neurons (PNs) in the larval zebrafish cerebellum exhibit membrane potential bistability, firing either tonically or in bursts. Several studies have implicated the role of a population code in cerebellar function, with bistability adding an extra layer of complexity to this code. In this manuscript we develop a tool, CaMLSort which uses convolutional recurrent neural networks to classify calcium imaging traces as arising from either tonic or bursting cells. We validate this classifier using a number of different methods and find that it performs well on simulated event rasters as well as real biological data that it had not previously seen. Moreover, we find that CaMLsort generalizes to other bistable neurons, such as dopaminergic neurons in the ventral tegmental area of mice. Thus, this tool offers a new way of analyzing calcium imaging data from bistable neurons to understand how they participate in network computation and natural behaviors. Key Points Summary Calcium imaging – the gold standard of inferring neuronal activity – does not report cellular state in neurons that are bistable, such as Purkinje neurons in the cerebellum of larval zebrafish. We model the relationship between Purkinje neuron electrical activity and its corresponding calcium signal to compile a dataset of state-labelled simulated calcium signals. We apply machine-learning methods to this dataset to develop a tool that can classify the state of a Purkinje neuron using only its calcium signal, which works well on real data even though it was trained only on simulated data. CaMLsort also generalizes well to bistable neurons in a different brain region (ventral tegmental area) in a different model organism (mouse). This tool offers a new way of analyzing calcium imaging data from populations of bistable neurons, thereby facilitating our understanding of how these neurons carry out their functions in a circuit.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一站到底完成签到,获得积分10
1秒前
满意雅霜发布了新的文献求助10
3秒前
3秒前
顾矜应助爱学习的小凌采纳,获得10
4秒前
6秒前
7秒前
tuborong完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
默默白开水完成签到,获得积分10
10秒前
李健的小迷弟应助木叶采纳,获得30
10秒前
10秒前
名天发布了新的文献求助10
13秒前
青林发布了新的文献求助10
13秒前
14秒前
天天应助MiloYip采纳,获得10
16秒前
16秒前
CipherSage应助tuborong采纳,获得10
17秒前
LKSkywalker完成签到,获得积分10
17秒前
单薄怜寒发布了新的文献求助10
19秒前
22秒前
Enisbao发布了新的文献求助10
23秒前
soapffz完成签到,获得积分10
24秒前
26秒前
w420860432发布了新的文献求助10
27秒前
所所应助星燃采纳,获得10
28秒前
29秒前
29秒前
29秒前
31秒前
ding应助稳重的山柏采纳,获得10
32秒前
啊啊啊发布了新的文献求助10
32秒前
33秒前
w420860432完成签到,获得积分10
33秒前
圈儿完成签到,获得积分10
33秒前
小兔叽完成签到,获得积分10
36秒前
柒月发布了新的文献求助10
36秒前
40秒前
苹果书文完成签到 ,获得积分10
41秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462739
求助须知:如何正确求助?哪些是违规求助? 3056247
关于积分的说明 9051296
捐赠科研通 2745940
什么是DOI,文献DOI怎么找? 1506688
科研通“疑难数据库(出版商)”最低求助积分说明 696194
邀请新用户注册赠送积分活动 695720