Using Markov chains to identify player’s performance in badminton

马尔可夫链 数学 计算机科学 统计 广告 业务
作者
Javier Galeano,Miguel–Ángel Gómez,Fernando Rivas,Javier M. Buldú
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:165: 112828-112828 被引量:4
标识
DOI:10.1016/j.chaos.2022.112828
摘要

We introduce a new way of quantifying the performance of badminton players by analysing their hitting sequences. Using the position of players during 3 consecutive strokes, we create length-3 patterns associated to the playing style of each player. Additionally, we extract from the video matches the information about the initiative gained by a player when performing a stroke, together with the player who won the point at the end of each rally. Next, we obtain the probability that a 3-order pattern is performed by a player and compared it with the average of the top-twenty players. We calculate the transition probabilities between patterns and construct the corresponding Markov chains including two absorbing states: winning and losing the rally. The Markov matrix allow us to obtain the probability of winning a point once a given pattern appears in the rally, which we call the Expected Pattern Value (EPV). Finally, we investigate the interplay between the EPV and the gain of initiative achieved by a player when performing each pattern. With this information, we are able to detect what patterns are better performed by a player and, furthermore, relate the values of the patterns with the actual probability of winning a rally. • We study 3-stroke pattern to understand the evolution of a rally in a badminton match. • Using Markov chains with absorbing states we obtain the probability of a winning point. • Using the Markov matrix, we define the Expected Pattern Value (EPV) in Badminton. • We study the interplay between EPVs and initiative gain to asses winning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
somus1997完成签到,获得积分10
1秒前
l零琳琳发布了新的文献求助10
1秒前
jiangjiarui发布了新的文献求助10
2秒前
Edwyna发布了新的文献求助10
2秒前
2秒前
2秒前
NexusExplorer应助Sylar采纳,获得10
3秒前
郑祺祺发布了新的文献求助10
3秒前
莫林在发布了新的文献求助10
3秒前
fairyinn发布了新的文献求助10
3秒前
3秒前
3秒前
啊呀瑶发布了新的文献求助10
3秒前
4秒前
所所应助毛77采纳,获得30
4秒前
4秒前
芽芽豆完成签到 ,获得积分10
4秒前
4秒前
SciGPT应助Azaw采纳,获得10
4秒前
miaomiao发布了新的文献求助10
4秒前
叙温雨发布了新的文献求助10
4秒前
Twonej应助wangQ采纳,获得10
5秒前
yangyang发布了新的文献求助10
5秒前
酷波er应助yutian采纳,获得10
5秒前
萝卜应助xixia采纳,获得10
6秒前
pluto应助xixia采纳,获得10
6秒前
AAA小秦科研1412完成签到,获得积分10
6秒前
xiao羊发布了新的文献求助10
6秒前
楊子发布了新的文献求助10
6秒前
reece完成签到,获得积分10
6秒前
SciGPT应助nini采纳,获得10
6秒前
陶醉从云完成签到,获得积分10
7秒前
彭于晏应助YPJ--采纳,获得10
7秒前
7秒前
8秒前
进击中的H完成签到,获得积分10
8秒前
科研通AI6.1应助郑祺祺采纳,获得10
9秒前
9秒前
陶醉从云发布了新的文献求助10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751224
求助须知:如何正确求助?哪些是违规求助? 5467290
关于积分的说明 15369117
捐赠科研通 4890347
什么是DOI,文献DOI怎么找? 2629649
邀请新用户注册赠送积分活动 1577942
关于科研通互助平台的介绍 1534122