亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using Markov chains to identify player’s performance in badminton

马尔可夫链 数学 计算机科学 统计 广告 业务
作者
Javier Galeano,Miguel–Ángel Gómez,Fernando Rivas,Javier M. Buldú
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:165: 112828-112828 被引量:4
标识
DOI:10.1016/j.chaos.2022.112828
摘要

We introduce a new way of quantifying the performance of badminton players by analysing their hitting sequences. Using the position of players during 3 consecutive strokes, we create length-3 patterns associated to the playing style of each player. Additionally, we extract from the video matches the information about the initiative gained by a player when performing a stroke, together with the player who won the point at the end of each rally. Next, we obtain the probability that a 3-order pattern is performed by a player and compared it with the average of the top-twenty players. We calculate the transition probabilities between patterns and construct the corresponding Markov chains including two absorbing states: winning and losing the rally. The Markov matrix allow us to obtain the probability of winning a point once a given pattern appears in the rally, which we call the Expected Pattern Value (EPV). Finally, we investigate the interplay between the EPV and the gain of initiative achieved by a player when performing each pattern. With this information, we are able to detect what patterns are better performed by a player and, furthermore, relate the values of the patterns with the actual probability of winning a rally. • We study 3-stroke pattern to understand the evolution of a rally in a badminton match. • Using Markov chains with absorbing states we obtain the probability of a winning point. • Using the Markov matrix, we define the Expected Pattern Value (EPV) in Badminton. • We study the interplay between EPVs and initiative gain to asses winning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
9秒前
YB发布了新的文献求助10
11秒前
13秒前
华仔应助顺顺过过采纳,获得10
18秒前
20秒前
25秒前
shinble完成签到,获得积分10
25秒前
CcXiXi发布了新的文献求助10
26秒前
Lucas应助SIMON采纳,获得10
29秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
好运常在完成签到 ,获得积分10
32秒前
米龙完成签到,获得积分10
35秒前
36秒前
Honor完成签到 ,获得积分10
37秒前
Ava应助YB采纳,获得10
38秒前
三三完成签到 ,获得积分10
39秒前
月亮门完成签到 ,获得积分10
40秒前
虚幻幻嫣发布了新的文献求助10
41秒前
充电宝应助木槿采纳,获得10
42秒前
马迦南完成签到 ,获得积分10
43秒前
49秒前
健忘蘑菇完成签到,获得积分10
50秒前
52秒前
52秒前
CC完成签到 ,获得积分10
54秒前
57秒前
57秒前
谷gu发布了新的文献求助10
57秒前
57秒前
有趣的饼干完成签到,获得积分10
58秒前
爱吃煎饼果子的芋圆完成签到 ,获得积分10
1分钟前
1分钟前
苗条白枫完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738972
求助须知:如何正确求助?哪些是违规求助? 5382083
关于积分的说明 15339021
捐赠科研通 4881737
什么是DOI,文献DOI怎么找? 2623886
邀请新用户注册赠送积分活动 1572547
关于科研通互助平台的介绍 1529310