Using Markov chains to identify player’s performance in badminton

马尔可夫链 数学 计算机科学 统计 广告 业务
作者
Javier Galeano,Miguel–Ángel Gómez,Fernando Rivas,Javier M. Buldú
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:165: 112828-112828 被引量:4
标识
DOI:10.1016/j.chaos.2022.112828
摘要

We introduce a new way of quantifying the performance of badminton players by analysing their hitting sequences. Using the position of players during 3 consecutive strokes, we create length-3 patterns associated to the playing style of each player. Additionally, we extract from the video matches the information about the initiative gained by a player when performing a stroke, together with the player who won the point at the end of each rally. Next, we obtain the probability that a 3-order pattern is performed by a player and compared it with the average of the top-twenty players. We calculate the transition probabilities between patterns and construct the corresponding Markov chains including two absorbing states: winning and losing the rally. The Markov matrix allow us to obtain the probability of winning a point once a given pattern appears in the rally, which we call the Expected Pattern Value (EPV). Finally, we investigate the interplay between the EPV and the gain of initiative achieved by a player when performing each pattern. With this information, we are able to detect what patterns are better performed by a player and, furthermore, relate the values of the patterns with the actual probability of winning a rally. • We study 3-stroke pattern to understand the evolution of a rally in a badminton match. • Using Markov chains with absorbing states we obtain the probability of a winning point. • Using the Markov matrix, we define the Expected Pattern Value (EPV) in Badminton. • We study the interplay between EPVs and initiative gain to asses winning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
_蝴蝶小姐完成签到,获得积分10
刚刚
诗轩发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
迟大猫应助乐乱采纳,获得10
2秒前
万能图书馆应助派大星采纳,获得10
3秒前
FashionBoy应助娜行采纳,获得10
4秒前
4秒前
传奇3应助后知后觉采纳,获得10
5秒前
5秒前
5秒前
科研通AI2S应助Chem is try采纳,获得10
5秒前
6秒前
a方舟发布了新的文献求助10
6秒前
寒冷书竹发布了新的文献求助10
6秒前
6秒前
hhh发布了新的文献求助10
6秒前
顾矜应助富婆嘉嘉子采纳,获得10
6秒前
6秒前
6秒前
7秒前
江风海韵完成签到,获得积分10
7秒前
火星上的从雪完成签到,获得积分10
7秒前
在水一方应助kai采纳,获得10
7秒前
打打应助留胡子的青柏采纳,获得10
8秒前
8秒前
zhanghw发布了新的文献求助10
8秒前
Frank完成签到,获得积分10
8秒前
桐桐应助小喵采纳,获得10
8秒前
香蕉觅云应助执笔客采纳,获得10
8秒前
light完成签到 ,获得积分10
8秒前
你仔细听完成签到,获得积分10
9秒前
9秒前
Sailzyf完成签到,获得积分10
9秒前
抓恐龙发布了新的文献求助10
9秒前
9秒前
汉堡包应助言小采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672