Using Markov chains to identify player’s performance in badminton

马尔可夫链 数学 计算机科学 统计 广告 业务
作者
Javier Galeano,Miguel–Ángel Gómez,Fernando Rivas,Javier M. Buldú
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:165: 112828-112828 被引量:4
标识
DOI:10.1016/j.chaos.2022.112828
摘要

We introduce a new way of quantifying the performance of badminton players by analysing their hitting sequences. Using the position of players during 3 consecutive strokes, we create length-3 patterns associated to the playing style of each player. Additionally, we extract from the video matches the information about the initiative gained by a player when performing a stroke, together with the player who won the point at the end of each rally. Next, we obtain the probability that a 3-order pattern is performed by a player and compared it with the average of the top-twenty players. We calculate the transition probabilities between patterns and construct the corresponding Markov chains including two absorbing states: winning and losing the rally. The Markov matrix allow us to obtain the probability of winning a point once a given pattern appears in the rally, which we call the Expected Pattern Value (EPV). Finally, we investigate the interplay between the EPV and the gain of initiative achieved by a player when performing each pattern. With this information, we are able to detect what patterns are better performed by a player and, furthermore, relate the values of the patterns with the actual probability of winning a rally. • We study 3-stroke pattern to understand the evolution of a rally in a badminton match. • Using Markov chains with absorbing states we obtain the probability of a winning point. • Using the Markov matrix, we define the Expected Pattern Value (EPV) in Badminton. • We study the interplay between EPVs and initiative gain to asses winning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Lucins采纳,获得10
1秒前
1秒前
欣喜雅香发布了新的文献求助10
1秒前
华仔应助RE采纳,获得10
1秒前
Niki完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6.1应助12采纳,获得10
4秒前
5秒前
lllate完成签到 ,获得积分10
5秒前
5秒前
5秒前
棠棠发布了新的文献求助10
7秒前
孙伟健发布了新的文献求助10
8秒前
冷傲书萱应助元谷雪采纳,获得10
8秒前
大模型应助念安采纳,获得10
8秒前
dkx完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
dodo发布了新的文献求助10
11秒前
12秒前
cL发布了新的文献求助10
12秒前
诚心的忆灵完成签到,获得积分10
14秒前
蔚蓝发布了新的文献求助10
15秒前
free_man完成签到,获得积分10
15秒前
葡萄王子完成签到,获得积分10
16秒前
ruihan完成签到 ,获得积分10
16秒前
葛洪成发布了新的文献求助30
16秒前
可爱的函函应助詹卫卫采纳,获得10
16秒前
17秒前
18秒前
pp完成签到,获得积分20
18秒前
菜菜完成签到 ,获得积分10
18秒前
柔弱思卉完成签到 ,获得积分10
18秒前
蔚蓝完成签到 ,获得积分10
19秒前
19秒前
pluto应助搞笑的随机昵称采纳,获得10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760949
求助须知:如何正确求助?哪些是违规求助? 5526930
关于积分的说明 15398694
捐赠科研通 4897597
什么是DOI,文献DOI怎么找? 2634253
邀请新用户注册赠送积分活动 1582378
关于科研通互助平台的介绍 1537706