Using Markov chains to identify player’s performance in badminton

马尔可夫链 数学 计算机科学 统计 广告 业务
作者
Javier Galeano,Miguel–Ángel Gómez,Fernando Rivas,Javier M. Buldú
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:165: 112828-112828 被引量:4
标识
DOI:10.1016/j.chaos.2022.112828
摘要

We introduce a new way of quantifying the performance of badminton players by analysing their hitting sequences. Using the position of players during 3 consecutive strokes, we create length-3 patterns associated to the playing style of each player. Additionally, we extract from the video matches the information about the initiative gained by a player when performing a stroke, together with the player who won the point at the end of each rally. Next, we obtain the probability that a 3-order pattern is performed by a player and compared it with the average of the top-twenty players. We calculate the transition probabilities between patterns and construct the corresponding Markov chains including two absorbing states: winning and losing the rally. The Markov matrix allow us to obtain the probability of winning a point once a given pattern appears in the rally, which we call the Expected Pattern Value (EPV). Finally, we investigate the interplay between the EPV and the gain of initiative achieved by a player when performing each pattern. With this information, we are able to detect what patterns are better performed by a player and, furthermore, relate the values of the patterns with the actual probability of winning a rally. • We study 3-stroke pattern to understand the evolution of a rally in a badminton match. • Using Markov chains with absorbing states we obtain the probability of a winning point. • Using the Markov matrix, we define the Expected Pattern Value (EPV) in Badminton. • We study the interplay between EPVs and initiative gain to asses winning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
狂野的冰棍完成签到,获得积分10
1秒前
1秒前
zbs发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
Kristal发布了新的文献求助30
3秒前
3秒前
M橘子发布了新的文献求助30
3秒前
ShengQ完成签到,获得积分10
4秒前
4秒前
4秒前
鱿鱼发布了新的文献求助10
5秒前
yuyukeke完成签到,获得积分10
5秒前
5秒前
5秒前
qqxin发布了新的文献求助10
6秒前
li完成签到,获得积分20
6秒前
6秒前
韩璐完成签到,获得积分10
6秒前
刘桔发布了新的文献求助10
7秒前
科研通AI5应助梓榆采纳,获得10
7秒前
7秒前
7秒前
科研通AI5应助怡然白竹采纳,获得10
8秒前
科研通AI6应助凡仔采纳,获得10
8秒前
Kristal完成签到,获得积分10
8秒前
9秒前
阿xi霸给阿xi霸的求助进行了留言
9秒前
10秒前
11秒前
勤恳冰淇淋完成签到 ,获得积分10
11秒前
12秒前
风中中道发布了新的文献求助10
12秒前
13秒前
13秒前
顾矜应助haoyunlai采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558330
求助须知:如何正确求助?哪些是违规求助? 3985350
关于积分的说明 12338439
捐赠科研通 3655702
什么是DOI,文献DOI怎么找? 2013951
邀请新用户注册赠送积分活动 1048833
科研通“疑难数据库(出版商)”最低求助积分说明 937181