计算机科学
稳健性(进化)
卷积神经网络
多元统计
相继的
人工智能
深度学习
系列(地层学)
人工神经网络
时间序列
短时记忆
期限(时间)
能量(信号处理)
算法
模式识别(心理学)
机器学习
循环神经网络
数学
统计
物理
古生物学
基因
生物
量子力学
化学
生物化学
程序设计语言
作者
Antonello Rosato,Rodolfo Araneo,Amedeo Andreotti,Massimo Panella
标识
DOI:10.1109/eeeic.2019.8783304
摘要
A novel deep learning approach in proposed in this paper for multivariate prediction of energy time series. It is developed by using Convolutional Neural Network and Long Short-Term Memory models, in such a way that several correlated time series can be joined and filtered together considering the long term dependencies on the whole information. The learning scheme can be viewed as a stacked deep neural network where one or more layers are superposed, feeding their output in the sequent layer's input. The new approach is applied to real-world problems in energy area to prove robustness and accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI