A Coarse-to-Fine Framework for Cloud Removal in Remote Sensing Image Sequence

计算机科学 稳健主成分分析 遥感 云计算 离群值 噪音(视频) 人工智能 计算机视觉 主成分分析 数据挖掘 像素 图像(数学) 地质学 操作系统
作者
Yongjun Zhang,Fei Wen,Zhi Gao,Xiao Ling
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (8): 5963-5974 被引量:38
标识
DOI:10.1109/tgrs.2019.2903594
摘要

Clouds and accompanying shadows, which exist in optical remote sensing images with high possibility, can degrade or even completely occlude certain ground-cover information in images, limiting their applicabilities for Earth observation, change detection, or land-cover classification. In this paper, we aim to deal with cloud contamination problems with the objective of generating cloud-removed remote sensing images. Inspired by low-rank representation together with sparsity constraints, we propose a coarse-to-fine framework for cloud removal in the remote sensing image sequence. Leveraging on group-sparsity constraint, we first decompose the observed cloud image sequence of the same area into the low-rank component, group-sparse outliers, and sparse noise, corresponding to cloud-free land-covers, clouds (and accompanying shadows), and noise respectively. Subsequently, a discriminative robust principal component analysis (RPCA) algorithm is utilized to assign aggressive penalizing weights to the initially detected cloud pixels to facilitate cloud removal and scene restoration. Moreover, we incorporate geometrical transformation into a low-rank model to address the misalignment of the image sequence. Significantly superior to conventional cloud-removal methods, neither cloud-free reference image(s) nor additional operations of cloud and shadow detection are required in our method. Extensive experiments on both simulated data and real data demonstrate that our method works effectively, outperforming many state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助asdfqwer采纳,获得10
刚刚
刚刚
Ava应助科研通管家采纳,获得10
1秒前
不配.应助科研通管家采纳,获得20
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
zyt完成签到,获得积分10
3秒前
ding应助大气早晨采纳,获得10
3秒前
科目三应助大气早晨采纳,获得10
3秒前
周宸完成签到,获得积分10
3秒前
SciGPT应助淡然子轩采纳,获得30
3秒前
3秒前
万海发布了新的文献求助10
4秒前
5秒前
QXS关注了科研通微信公众号
5秒前
dusk发布了新的文献求助10
5秒前
Parotodus发布了新的文献求助10
6秒前
7秒前
宏、完成签到,获得积分10
9秒前
9秒前
李健的粉丝团团长应助Lin采纳,获得10
9秒前
11秒前
科目三应助大清采纳,获得10
11秒前
12秒前
FashionBoy应助李奚采纳,获得10
12秒前
13秒前
13秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153624
求助须知:如何正确求助?哪些是违规求助? 2804799
关于积分的说明 7861757
捐赠科研通 2462835
什么是DOI,文献DOI怎么找? 1311002
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601821