A Coarse-to-Fine Framework for Cloud Removal in Remote Sensing Image Sequence

计算机科学 稳健主成分分析 遥感 云计算 离群值 噪音(视频) 人工智能 计算机视觉 主成分分析 数据挖掘 像素 图像(数学) 地质学 操作系统
作者
Yongjun Zhang,Fei Wen,Zhi Gao,Xiao Ling
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (8): 5963-5974 被引量:38
标识
DOI:10.1109/tgrs.2019.2903594
摘要

Clouds and accompanying shadows, which exist in optical remote sensing images with high possibility, can degrade or even completely occlude certain ground-cover information in images, limiting their applicabilities for Earth observation, change detection, or land-cover classification. In this paper, we aim to deal with cloud contamination problems with the objective of generating cloud-removed remote sensing images. Inspired by low-rank representation together with sparsity constraints, we propose a coarse-to-fine framework for cloud removal in the remote sensing image sequence. Leveraging on group-sparsity constraint, we first decompose the observed cloud image sequence of the same area into the low-rank component, group-sparse outliers, and sparse noise, corresponding to cloud-free land-covers, clouds (and accompanying shadows), and noise respectively. Subsequently, a discriminative robust principal component analysis (RPCA) algorithm is utilized to assign aggressive penalizing weights to the initially detected cloud pixels to facilitate cloud removal and scene restoration. Moreover, we incorporate geometrical transformation into a low-rank model to address the misalignment of the image sequence. Significantly superior to conventional cloud-removal methods, neither cloud-free reference image(s) nor additional operations of cloud and shadow detection are required in our method. Extensive experiments on both simulated data and real data demonstrate that our method works effectively, outperforming many state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豪发布了新的文献求助50
刚刚
书瑶发布了新的文献求助10
刚刚
Sherry完成签到,获得积分10
刚刚
刚刚
2秒前
风趣亦巧完成签到 ,获得积分10
3秒前
我是老大应助zifeimo采纳,获得10
3秒前
3秒前
4秒前
FashionBoy应助李哈哈采纳,获得10
4秒前
tz发布了新的文献求助10
4秒前
鱼海寻俞完成签到,获得积分10
5秒前
小刘发布了新的文献求助10
5秒前
英姑应助PPD采纳,获得10
5秒前
小豪完成签到,获得积分10
6秒前
大海123完成签到,获得积分10
6秒前
wbp31驳回了情怀应助
6秒前
jie酱拌面应助山上的树采纳,获得10
7秒前
吴剑宇发布了新的文献求助10
8秒前
8秒前
大宏发布了新的文献求助30
8秒前
aktuell发布了新的文献求助30
9秒前
10秒前
QQ完成签到,获得积分10
10秒前
上官若男应助亓大大采纳,获得10
11秒前
dd完成签到 ,获得积分10
11秒前
11秒前
庸俗完成签到,获得积分20
12秒前
12秒前
黄晓梅给黄晓梅的求助进行了留言
12秒前
隐形曼青应助gbr0519采纳,获得10
13秒前
风中尔蝶关注了科研通微信公众号
13秒前
小二郎应助tz采纳,获得10
13秒前
梨子发布了新的文献求助10
13秒前
1134695021完成签到,获得积分10
14秒前
14秒前
轻松完成签到,获得积分10
14秒前
赘婿应助春儿采纳,获得10
14秒前
闾丘惜萱完成签到,获得积分10
14秒前
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482