A Coarse-to-Fine Framework for Cloud Removal in Remote Sensing Image Sequence

计算机科学 稳健主成分分析 遥感 云计算 离群值 噪音(视频) 人工智能 计算机视觉 主成分分析 数据挖掘 像素 图像(数学) 地质学 操作系统
作者
Yongjun Zhang,Fei Wen,Zhi Gao,Xiao Ling
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (8): 5963-5974 被引量:38
标识
DOI:10.1109/tgrs.2019.2903594
摘要

Clouds and accompanying shadows, which exist in optical remote sensing images with high possibility, can degrade or even completely occlude certain ground-cover information in images, limiting their applicabilities for Earth observation, change detection, or land-cover classification. In this paper, we aim to deal with cloud contamination problems with the objective of generating cloud-removed remote sensing images. Inspired by low-rank representation together with sparsity constraints, we propose a coarse-to-fine framework for cloud removal in the remote sensing image sequence. Leveraging on group-sparsity constraint, we first decompose the observed cloud image sequence of the same area into the low-rank component, group-sparse outliers, and sparse noise, corresponding to cloud-free land-covers, clouds (and accompanying shadows), and noise respectively. Subsequently, a discriminative robust principal component analysis (RPCA) algorithm is utilized to assign aggressive penalizing weights to the initially detected cloud pixels to facilitate cloud removal and scene restoration. Moreover, we incorporate geometrical transformation into a low-rank model to address the misalignment of the image sequence. Significantly superior to conventional cloud-removal methods, neither cloud-free reference image(s) nor additional operations of cloud and shadow detection are required in our method. Extensive experiments on both simulated data and real data demonstrate that our method works effectively, outperforming many state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
orixero应助JAYhxt采纳,获得30
2秒前
2秒前
2秒前
zirconium完成签到,获得积分20
2秒前
2秒前
阔达如松发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
留胡子的千青完成签到,获得积分20
3秒前
5秒前
关23完成签到 ,获得积分10
5秒前
5秒前
大鱼发布了新的文献求助10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
哦豁应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
7秒前
慕青应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240