期刊:Journal of Cold Regions Engineering [American Society of Civil Engineers] 日期:2019-06-14卷期号:33 (3)被引量:97
标识
DOI:10.1061/(asce)cr.1943-5495.0000188
摘要
Mechanical properties of frozen soils (e.g., triaxial compressive strength, σtc and Young’s modulus, E) are important in tunnel, shaft, or open pit excavation projects. Although numerous attempts have been made to develop indirect methods to estimate unfrozen soils’ σtc and E values, this has not been done with frozen soils given the difficulty of preparing and conducting relevant laboratory tests. In this study, the accuracy of artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS), and support vector machine (SVM) models, developed to predict σtc and E for frozen sandy soils, was compared. To the best of the authors’ knowledge, no study has predicted frozen soils’ σtc and E using these methods. Eighty-two poorly graded sandy soil samples from an urban subway borehole in Tabriz, Iran, were used to develop these models. It was found that temperature, confining pressure, strain rate, and yielding strain improved the accuracy of σtc and E prediction. Results indicate that SVM can successfully be used in predicting the σtc and E of frozen soils.