Speeding Up the Line-Scan Raman Imaging of Living Cells by Deep Convolutional Neural Network

卷积神经网络 拉曼光谱 人工智能 图像分辨率 光谱成像 显微镜 化学成像 样品(材料) 计算机科学 模式识别(心理学) 高光谱成像 化学 光学 物理 色谱法
作者
Hao He,Mengxi Xu,Cheng Zong,Peng Zheng,Lilan Luo,Lei Wang,Bin Ren
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:91 (11): 7070-7077 被引量:49
标识
DOI:10.1021/acs.analchem.8b05962
摘要

Raman imaging is a promising technique that allows the spatial distribution of different components in the sample to be obtained using the molecular fingerprint information on individual species. However, the imaging speed is the bottleneck for the current Raman imaging methods to monitor the dynamic process of living cells. In this paper, we developed an artificial intelligence assisted fast Raman imaging method over the already fast line scan Raman imaging method. The reduced imaging time is realized by widening the slit and laser beam, and scanning the sample with a large scan step. The imaging quality is improved by a data-driven approach to train a deep convolutional neural network, which statistically learns to transform low-resolution images acquired at a high speed into high-resolution ones that previously were only possible with a low imaging speed. Accompanied with the improvement of the image resolution, the deteriorated spectral resolution as a consequence of a wide slit is also restored, thereby the fidelity of the spectral information is retained. The imaging time can be reduced to within 1 min, which is about five times faster than the state-of-the-art line scan Raman imaging techniques without sacrificing spectral and spatial resolution. We then demonstrated the reliability of the current method using fixed cells. We finally used the method to monitor the dynamic evolution process of living cells. Such an imaging speed opens a door to the label-free observation of cellular events with conventional Raman microscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
在北极寻找食物的企鹅完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Orange应助Floy采纳,获得10
4秒前
5秒前
搜集达人应助cc采纳,获得10
5秒前
Tangtang完成签到 ,获得积分10
5秒前
123发布了新的文献求助10
5秒前
小小发布了新的文献求助10
6秒前
电池高手完成签到,获得积分10
6秒前
1b发布了新的文献求助10
7秒前
222发布了新的文献求助30
7秒前
S杨发布了新的文献求助10
7秒前
caohuijun发布了新的文献求助10
8秒前
丘比特应助文艺的夏青采纳,获得10
8秒前
亲亲完成签到,获得积分10
8秒前
serendipity发布了新的文献求助10
9秒前
Ting完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
Sean发布了新的文献求助10
11秒前
傻了我都完成签到,获得积分10
11秒前
独摇之完成签到,获得积分10
11秒前
英俊的铭应助Liu采纳,获得10
12秒前
ivylyu完成签到 ,获得积分10
15秒前
15秒前
bkagyin应助牧谷采纳,获得10
16秒前
英俊的铭应助YCE姚采纳,获得10
16秒前
yuanyuan发布了新的文献求助10
16秒前
科研通AI6应助123采纳,获得10
17秒前
17秒前
S杨完成签到,获得积分10
17秒前
慕青应助caohuijun采纳,获得10
18秒前
1248846完成签到 ,获得积分10
18秒前
21发布了新的文献求助40
18秒前
18秒前
liang发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598674
求助须知:如何正确求助?哪些是违规求助? 4684106
关于积分的说明 14833669
捐赠科研通 4664342
什么是DOI,文献DOI怎么找? 2537343
邀请新用户注册赠送积分活动 1504904
关于科研通互助平台的介绍 1470593