Development and validation of a predictive model to identify patients at risk of severe COPD exacerbations using administrative claims data

医学 慢性阻塞性肺病 逻辑回归 共病 接收机工作特性 回顾性队列研究 队列 急诊医学 疾病严重程度 试验预测值 正谓词值 内科学 生活质量(医疗保健) 恶化 重症监护医学 预测值 护理部
作者
Srinivas Annavarapu,Seth Goldfarb,Michael H. Gelb,Chad Moretz,Andrew Renda,Shuchita Kaila
出处
期刊:International Journal of Chronic Obstructive Pulmonary Disease [Dove Medical Press]
卷期号:Volume 13: 2121-2130 被引量:26
标识
DOI:10.2147/copd.s155773
摘要

Patients with COPD often experience severe exacerbations involving hospitalization, which accelerate lung function decline and reduce quality of life. This study aimed to develop and validate a predictive model to identify patients at risk of developing severe COPD exacerbations using administrative claims data, to facilitate appropriate disease management programs.A predictive model was developed using a retrospective cohort of COPD patients aged 55-89 years identified between July 1, 2010 and June 30, 2013 using Humana's claims data. The baseline period was 12 months postdiagnosis, and the prediction period covered months 12-24. Patients with and without severe exacerbations in the prediction period were compared to identify characteristics associated with severe COPD exacerbations. Models were developed using stepwise logistic regression, and a final model was chosen to optimize sensitivity, specificity, positive predictive value (PPV), and negative PV (NPV).Of 45,722 patients, 5,317 had severe exacerbations in the prediction period. Patients with severe exacerbations had significantly higher comorbidity burden, use of respiratory medications, and tobacco-cessation counseling compared to those without severe exacerbations in the baseline period. The predictive model included 29 variables that were significantly associated with severe exacerbations. The strongest predictors were prior severe exacerbations and higher Deyo-Charlson comorbidity score (OR 1.50 and 1.47, respectively). The best-performing predictive model had an area under the curve of 0.77. A receiver operating characteristic cutoff of 0.4 was chosen to optimize PPV, and the model had sensitivity of 17%, specificity of 98%, PPV of 48%, and NPV of 90%.This study found that of every two patients identified by the predictive model to be at risk of severe exacerbation, one patient may have a severe exacerbation. Once at-risk patients are identified, appropriate maintenance medication, implementation of disease-management programs, and education may prevent future exacerbations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研小虫采纳,获得30
1秒前
负责之柔完成签到,获得积分10
1秒前
马小翠完成签到,获得积分10
1秒前
猪肉超人菜婴蚊完成签到,获得积分10
1秒前
XiaoQi完成签到,获得积分10
2秒前
2秒前
鹿小新完成签到 ,获得积分10
2秒前
wzx完成签到,获得积分10
2秒前
小王发布了新的文献求助10
3秒前
栗子完成签到 ,获得积分10
3秒前
SciGPT应助cxc采纳,获得10
3秒前
yinqueshi完成签到,获得积分10
3秒前
3秒前
乐乐应助郭凯辉采纳,获得10
4秒前
于芋菊完成签到,获得积分0
4秒前
听雨发布了新的文献求助10
4秒前
4秒前
4秒前
luobo123发布了新的文献求助10
4秒前
Nara2021发布了新的文献求助10
4秒前
5秒前
RUC_Zhao发布了新的文献求助10
5秒前
5秒前
5秒前
赘婿应助123采纳,获得10
5秒前
fanjinzhu完成签到,获得积分20
5秒前
6秒前
北落发布了新的文献求助10
6秒前
曹原阁完成签到,获得积分10
7秒前
terry完成签到 ,获得积分10
7秒前
结实灵波完成签到,获得积分20
7秒前
7秒前
syy发布了新的文献求助10
7秒前
谭语君发布了新的文献求助20
8秒前
迟大猫给老白的求助进行了留言
8秒前
听雨完成签到,获得积分10
8秒前
11完成签到 ,获得积分10
8秒前
香蕉觅云应助akim采纳,获得10
9秒前
libiqing77发布了新的文献求助10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581022
求助须知:如何正确求助?哪些是违规求助? 3150661
关于积分的说明 9483675
捐赠科研通 2852321
什么是DOI,文献DOI怎么找? 1568107
邀请新用户注册赠送积分活动 734388
科研通“疑难数据库(出版商)”最低求助积分说明 720670