已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic data processing: Recursive least-squares

计算机科学 递归最小平方滤波器 算法 自适应滤波器
作者
P. J. G. Teunissen
标识
DOI:10.59490/tb.98
摘要

This book is a follow-up on Adjustment theory. It extends the theory to the case of time-varying parameters with an emphasis on their recursive determination. Least-squares estimation will be the leading principle used. A least-squares solution is said to be recursive when the method of computation enables sequential, rather than batch, processing of the measurement data. The recursive equations enable the updating of parameter estimates for new observations without the need to store all past observations. Methods of recursive least-squares estimation are therefore particularly useful for applications in which the time-varying parameters need to be instantly determined. Important examples of such applications can be found in the fields of real-time kinematic positioning, navigation and guidance, or multivariate time series analysis. The goal of this book is therefore to convey the necessary knowledge to be able to process sequentially collected measurements for the purpose of estimating time-varying parameters. When determining time-varying parameters from sequentially collected measurement data, one can discriminate between three types of estimation problems: filtering, prediction and smoothing. Filtering aims at the determination of current parameter values, while smoothing and prediction aim at the determination of respectively past and future parameter values. The emphasis in this book will be on recursive least-squares filtering. The theory is worked out for the important case of linear(ized) models. The measurement-update and time-update equations of recursive least-squares are discussed in detail. Models with sequentially collected data, but time-invariant parameters are treated first. In this case only the measurement-update equations apply. State-space models for dynamic systems are discussed so as to include time-varying parameters. This includes their linearization and the construction of the state transition matrix. Elements from the theory of random functions are used to describe the propagation laws for linear dynamic systems. The theory is illustrated by means of many worked out examples. They are drawn from applications such as kinematic positioning, satellite orbit determination and inertial navigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuishui发布了新的文献求助10
3秒前
黄汉良完成签到,获得积分10
3秒前
EMM完成签到 ,获得积分10
4秒前
知足的憨人*-*完成签到,获得积分10
4秒前
领导范儿应助顺利若山采纳,获得10
5秒前
6秒前
领导范儿应助家稚晴采纳,获得10
6秒前
清浅完成签到,获得积分10
8秒前
9秒前
9秒前
夏侯德东发布了新的文献求助10
12秒前
阿怪完成签到,获得积分10
12秒前
无花果应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
鬼笔环肽应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
13秒前
deanerysl完成签到,获得积分20
14秒前
恰知发布了新的文献求助10
14秒前
turui完成签到 ,获得积分10
15秒前
dery发布了新的文献求助10
15秒前
leena完成签到 ,获得积分10
17秒前
共享精神应助风中傲柔采纳,获得10
17秒前
倩倩完成签到 ,获得积分10
22秒前
蓝蜗牛完成签到,获得积分10
23秒前
Ss完成签到 ,获得积分10
25秒前
吾开心完成签到,获得积分20
27秒前
知行者完成签到,获得积分10
27秒前
dery完成签到,获得积分10
27秒前
海贵完成签到,获得积分10
28秒前
柚子完成签到 ,获得积分10
30秒前
30秒前
浮游应助元气满满采纳,获得10
31秒前
坐雨赏花完成签到 ,获得积分10
34秒前
招水若离完成签到,获得积分0
34秒前
恰知完成签到,获得积分10
35秒前
后陡门爱神完成签到 ,获得积分10
35秒前
danli发布了新的文献求助20
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5172597
求助须知:如何正确求助?哪些是违规求助? 4362775
关于积分的说明 13584396
捐赠科研通 4210832
什么是DOI,文献DOI怎么找? 2309516
邀请新用户注册赠送积分活动 1308631
关于科研通互助平台的介绍 1255818