Dynamic data processing: Recursive least-squares

计算机科学 递归最小平方滤波器 算法 自适应滤波器
作者
P. J. G. Teunissen
标识
DOI:10.59490/tb.98
摘要

This book is a follow-up on Adjustment theory. It extends the theory to the case of time-varying parameters with an emphasis on their recursive determination. Least-squares estimation will be the leading principle used. A least-squares solution is said to be recursive when the method of computation enables sequential, rather than batch, processing of the measurement data. The recursive equations enable the updating of parameter estimates for new observations without the need to store all past observations. Methods of recursive least-squares estimation are therefore particularly useful for applications in which the time-varying parameters need to be instantly determined. Important examples of such applications can be found in the fields of real-time kinematic positioning, navigation and guidance, or multivariate time series analysis. The goal of this book is therefore to convey the necessary knowledge to be able to process sequentially collected measurements for the purpose of estimating time-varying parameters. When determining time-varying parameters from sequentially collected measurement data, one can discriminate between three types of estimation problems: filtering, prediction and smoothing. Filtering aims at the determination of current parameter values, while smoothing and prediction aim at the determination of respectively past and future parameter values. The emphasis in this book will be on recursive least-squares filtering. The theory is worked out for the important case of linear(ized) models. The measurement-update and time-update equations of recursive least-squares are discussed in detail. Models with sequentially collected data, but time-invariant parameters are treated first. In this case only the measurement-update equations apply. State-space models for dynamic systems are discussed so as to include time-varying parameters. This includes their linearization and the construction of the state transition matrix. Elements from the theory of random functions are used to describe the propagation laws for linear dynamic systems. The theory is illustrated by means of many worked out examples. They are drawn from applications such as kinematic positioning, satellite orbit determination and inertial navigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大橙子发布了新的文献求助10
3秒前
wzhang完成签到,获得积分10
4秒前
ken131完成签到 ,获得积分10
7秒前
myl完成签到,获得积分10
8秒前
728完成签到,获得积分10
14秒前
xiaofeng5838完成签到,获得积分10
14秒前
ronnie完成签到,获得积分10
14秒前
17秒前
寒冷芷蕊完成签到,获得积分20
17秒前
17秒前
Jane完成签到,获得积分10
17秒前
一氧化二氢完成签到,获得积分10
23秒前
凡事发生必有利于我完成签到,获得积分10
24秒前
yihaiqin完成签到 ,获得积分10
28秒前
轩辕剑身完成签到,获得积分0
28秒前
coolkid完成签到 ,获得积分0
29秒前
你怎么那么美完成签到,获得积分10
29秒前
游艺完成签到 ,获得积分10
32秒前
冬月完成签到 ,获得积分10
32秒前
薛乎虚完成签到 ,获得积分10
33秒前
34秒前
大胖完成签到,获得积分10
34秒前
野火197完成签到,获得积分10
38秒前
39秒前
量子星尘发布了新的文献求助10
42秒前
April完成签到,获得积分10
42秒前
周舟完成签到 ,获得积分10
45秒前
V_I_G完成签到 ,获得积分10
46秒前
nick完成签到,获得积分10
47秒前
高高高完成签到 ,获得积分10
50秒前
彪壮的亦瑶完成签到 ,获得积分10
51秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
Perry应助科研通管家采纳,获得60
53秒前
Akim应助科研通管家采纳,获得10
53秒前
鱼雷完成签到,获得积分10
54秒前
廿伊发布了新的文献求助10
56秒前
我是125完成签到,获得积分10
58秒前
依人如梦完成签到 ,获得积分10
59秒前
1分钟前
PDIF-CN2完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022