Dynamic data processing: Recursive least-squares

计算机科学 递归最小平方滤波器 算法 自适应滤波器
作者
P. J. G. Teunissen
标识
DOI:10.59490/tb.98
摘要

This book is a follow-up on Adjustment theory. It extends the theory to the case of time-varying parameters with an emphasis on their recursive determination. Least-squares estimation will be the leading principle used. A least-squares solution is said to be recursive when the method of computation enables sequential, rather than batch, processing of the measurement data. The recursive equations enable the updating of parameter estimates for new observations without the need to store all past observations. Methods of recursive least-squares estimation are therefore particularly useful for applications in which the time-varying parameters need to be instantly determined. Important examples of such applications can be found in the fields of real-time kinematic positioning, navigation and guidance, or multivariate time series analysis. The goal of this book is therefore to convey the necessary knowledge to be able to process sequentially collected measurements for the purpose of estimating time-varying parameters. When determining time-varying parameters from sequentially collected measurement data, one can discriminate between three types of estimation problems: filtering, prediction and smoothing. Filtering aims at the determination of current parameter values, while smoothing and prediction aim at the determination of respectively past and future parameter values. The emphasis in this book will be on recursive least-squares filtering. The theory is worked out for the important case of linear(ized) models. The measurement-update and time-update equations of recursive least-squares are discussed in detail. Models with sequentially collected data, but time-invariant parameters are treated first. In this case only the measurement-update equations apply. State-space models for dynamic systems are discussed so as to include time-varying parameters. This includes their linearization and the construction of the state transition matrix. Elements from the theory of random functions are used to describe the propagation laws for linear dynamic systems. The theory is illustrated by means of many worked out examples. They are drawn from applications such as kinematic positioning, satellite orbit determination and inertial navigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋太君发布了新的文献求助10
刚刚
甜甜又亦完成签到,获得积分10
1秒前
1秒前
wzt完成签到,获得积分10
1秒前
烟花应助yangxt-iga采纳,获得10
2秒前
wentao发布了新的文献求助10
2秒前
ri_290完成签到,获得积分10
2秒前
hh完成签到,获得积分10
2秒前
2秒前
2秒前
李蕤蕤完成签到,获得积分10
2秒前
3秒前
SSSS完成签到,获得积分10
3秒前
HU完成签到,获得积分10
3秒前
3秒前
喜悦忆安完成签到,获得积分10
3秒前
3秒前
3秒前
2t发布了新的文献求助30
3秒前
黄紫红蓝发布了新的文献求助10
3秒前
稳重雁易完成签到 ,获得积分10
3秒前
4秒前
洛苏完成签到,获得积分10
5秒前
5秒前
Judson完成签到 ,获得积分10
5秒前
时尚战斗机完成签到,获得积分10
5秒前
思源应助chun123采纳,获得10
5秒前
严冥幽完成签到 ,获得积分10
7秒前
庆庆完成签到 ,获得积分10
7秒前
7秒前
7秒前
斯利美尔发布了新的文献求助10
8秒前
zd发布了新的文献求助10
8秒前
铁甲小宝发布了新的文献求助10
9秒前
LHH发布了新的文献求助10
9秒前
清脆平凡完成签到,获得积分10
10秒前
summer完成签到,获得积分0
10秒前
tingxiaomei完成签到,获得积分10
10秒前
XL发布了新的文献求助10
11秒前
月上半山发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997