亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic data processing: Recursive least-squares

计算机科学 递归最小平方滤波器 算法 自适应滤波器
作者
P. J. G. Teunissen
标识
DOI:10.59490/tb.98
摘要

This book is a follow-up on Adjustment theory. It extends the theory to the case of time-varying parameters with an emphasis on their recursive determination. Least-squares estimation will be the leading principle used. A least-squares solution is said to be recursive when the method of computation enables sequential, rather than batch, processing of the measurement data. The recursive equations enable the updating of parameter estimates for new observations without the need to store all past observations. Methods of recursive least-squares estimation are therefore particularly useful for applications in which the time-varying parameters need to be instantly determined. Important examples of such applications can be found in the fields of real-time kinematic positioning, navigation and guidance, or multivariate time series analysis. The goal of this book is therefore to convey the necessary knowledge to be able to process sequentially collected measurements for the purpose of estimating time-varying parameters. When determining time-varying parameters from sequentially collected measurement data, one can discriminate between three types of estimation problems: filtering, prediction and smoothing. Filtering aims at the determination of current parameter values, while smoothing and prediction aim at the determination of respectively past and future parameter values. The emphasis in this book will be on recursive least-squares filtering. The theory is worked out for the important case of linear(ized) models. The measurement-update and time-update equations of recursive least-squares are discussed in detail. Models with sequentially collected data, but time-invariant parameters are treated first. In this case only the measurement-update equations apply. State-space models for dynamic systems are discussed so as to include time-varying parameters. This includes their linearization and the construction of the state transition matrix. Elements from the theory of random functions are used to describe the propagation laws for linear dynamic systems. The theory is illustrated by means of many worked out examples. They are drawn from applications such as kinematic positioning, satellite orbit determination and inertial navigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叙温雨发布了新的文献求助10
1秒前
garbage完成签到,获得积分10
7秒前
飘逸的飞丹完成签到 ,获得积分10
13秒前
14秒前
terry发布了新的文献求助10
20秒前
浮游应助科研通管家采纳,获得10
30秒前
GingerF应助科研通管家采纳,获得200
30秒前
天天快乐应助科研通管家采纳,获得10
30秒前
GingerF应助科研通管家采纳,获得200
31秒前
怡然枫叶完成签到,获得积分10
34秒前
ysc121完成签到 ,获得积分10
39秒前
41秒前
慕青应助terry采纳,获得20
44秒前
芝士发布了新的文献求助10
47秒前
flyinthesky完成签到,获得积分10
56秒前
1分钟前
1分钟前
Chen完成签到 ,获得积分10
1分钟前
Criminology34应助olekravchenko采纳,获得10
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
yueying完成签到,获得积分10
1分钟前
Criminology34应助olekravchenko采纳,获得10
1分钟前
打打应助叙温雨采纳,获得10
1分钟前
彩色的尔珍完成签到,获得积分10
1分钟前
万能图书馆应助庖丁解柚采纳,获得10
1分钟前
天天快乐应助123456采纳,获得10
2分钟前
2分钟前
2分钟前
123456发布了新的文献求助10
2分钟前
叙温雨发布了新的文献求助10
2分钟前
甜美帅哥发布了新的文献求助10
2分钟前
脑洞疼应助123456采纳,获得10
2分钟前
2分钟前
张宇完成签到,获得积分10
2分钟前
123456发布了新的文献求助10
2分钟前
3分钟前
小二郎应助叙温雨采纳,获得10
3分钟前
张文乐发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291497
求助须知:如何正确求助?哪些是违规求助? 4442516
关于积分的说明 13830013
捐赠科研通 4325551
什么是DOI,文献DOI怎么找? 2374353
邀请新用户注册赠送积分活动 1369670
关于科研通互助平台的介绍 1333839