Dynamic data processing: Recursive least-squares

计算机科学 递归最小平方滤波器 算法 自适应滤波器
作者
P. J. G. Teunissen
标识
DOI:10.59490/tb.98
摘要

This book is a follow-up on Adjustment theory. It extends the theory to the case of time-varying parameters with an emphasis on their recursive determination. Least-squares estimation will be the leading principle used. A least-squares solution is said to be recursive when the method of computation enables sequential, rather than batch, processing of the measurement data. The recursive equations enable the updating of parameter estimates for new observations without the need to store all past observations. Methods of recursive least-squares estimation are therefore particularly useful for applications in which the time-varying parameters need to be instantly determined. Important examples of such applications can be found in the fields of real-time kinematic positioning, navigation and guidance, or multivariate time series analysis. The goal of this book is therefore to convey the necessary knowledge to be able to process sequentially collected measurements for the purpose of estimating time-varying parameters. When determining time-varying parameters from sequentially collected measurement data, one can discriminate between three types of estimation problems: filtering, prediction and smoothing. Filtering aims at the determination of current parameter values, while smoothing and prediction aim at the determination of respectively past and future parameter values. The emphasis in this book will be on recursive least-squares filtering. The theory is worked out for the important case of linear(ized) models. The measurement-update and time-update equations of recursive least-squares are discussed in detail. Models with sequentially collected data, but time-invariant parameters are treated first. In this case only the measurement-update equations apply. State-space models for dynamic systems are discussed so as to include time-varying parameters. This includes their linearization and the construction of the state transition matrix. Elements from the theory of random functions are used to describe the propagation laws for linear dynamic systems. The theory is illustrated by means of many worked out examples. They are drawn from applications such as kinematic positioning, satellite orbit determination and inertial navigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
予诚完成签到 ,获得积分10
刚刚
外向蚂蚁发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助凶狠的璎采纳,获得10
2秒前
Z_jx完成签到,获得积分10
2秒前
苏恩完成签到,获得积分10
2秒前
真实的火车完成签到,获得积分10
2秒前
math-naive完成签到,获得积分10
3秒前
111完成签到 ,获得积分10
4秒前
考槃在涧完成签到 ,获得积分10
4秒前
跳跃的访琴完成签到 ,获得积分10
4秒前
科研牛马完成签到 ,获得积分10
4秒前
MM完成签到,获得积分10
7秒前
Arrhenius完成签到,获得积分10
7秒前
8秒前
神志不清的衾完成签到,获得积分10
10秒前
活泼的大船完成签到,获得积分10
10秒前
Pan完成签到 ,获得积分10
10秒前
摇摇摇不匀完成签到 ,获得积分10
10秒前
Zhaowx完成签到,获得积分10
12秒前
藏识完成签到,获得积分10
12秒前
要奋斗的小番茄完成签到,获得积分10
13秒前
14秒前
自由人完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
感动天荷完成签到,获得积分10
19秒前
Autaro完成签到,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助150
20秒前
尛森发布了新的文献求助10
21秒前
21秒前
abjz完成签到,获得积分10
21秒前
22秒前
Inversaydie完成签到,获得积分10
22秒前
子车茗应助科研通管家采纳,获得20
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
刘东妮应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418754
求助须知:如何正确求助?哪些是违规求助? 4534384
关于积分的说明 14143702
捐赠科研通 4450621
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433030
关于科研通互助平台的介绍 1410467