Dynamic data processing: Recursive least-squares

计算机科学 递归最小平方滤波器 算法 自适应滤波器
作者
P. J. G. Teunissen
标识
DOI:10.59490/tb.98
摘要

This book is a follow-up on Adjustment theory. It extends the theory to the case of time-varying parameters with an emphasis on their recursive determination. Least-squares estimation will be the leading principle used. A least-squares solution is said to be recursive when the method of computation enables sequential, rather than batch, processing of the measurement data. The recursive equations enable the updating of parameter estimates for new observations without the need to store all past observations. Methods of recursive least-squares estimation are therefore particularly useful for applications in which the time-varying parameters need to be instantly determined. Important examples of such applications can be found in the fields of real-time kinematic positioning, navigation and guidance, or multivariate time series analysis. The goal of this book is therefore to convey the necessary knowledge to be able to process sequentially collected measurements for the purpose of estimating time-varying parameters. When determining time-varying parameters from sequentially collected measurement data, one can discriminate between three types of estimation problems: filtering, prediction and smoothing. Filtering aims at the determination of current parameter values, while smoothing and prediction aim at the determination of respectively past and future parameter values. The emphasis in this book will be on recursive least-squares filtering. The theory is worked out for the important case of linear(ized) models. The measurement-update and time-update equations of recursive least-squares are discussed in detail. Models with sequentially collected data, but time-invariant parameters are treated first. In this case only the measurement-update equations apply. State-space models for dynamic systems are discussed so as to include time-varying parameters. This includes their linearization and the construction of the state transition matrix. Elements from the theory of random functions are used to describe the propagation laws for linear dynamic systems. The theory is illustrated by means of many worked out examples. They are drawn from applications such as kinematic positioning, satellite orbit determination and inertial navigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助wjx采纳,获得10
刚刚
郑恩熙发布了新的文献求助100
刚刚
斯文败类应助虞无声采纳,获得10
2秒前
潇洒的冷玉完成签到 ,获得积分10
2秒前
jinchen发布了新的文献求助10
3秒前
3秒前
UP完成签到,获得积分10
4秒前
4秒前
传奇3应助l739744402采纳,获得10
5秒前
MEST发布了新的文献求助10
5秒前
勿明应助wjx采纳,获得30
7秒前
英俊的铭应助wjx采纳,获得10
7秒前
科研通AI2S应助wjx采纳,获得10
8秒前
小马甲应助wjx采纳,获得10
8秒前
sam完成签到,获得积分10
8秒前
Owen应助wjx采纳,获得10
8秒前
Ava应助wjx采纳,获得10
8秒前
FashionBoy应助wjx采纳,获得10
8秒前
乐乐应助wjx采纳,获得30
8秒前
杰杰小杰发布了新的文献求助10
8秒前
哈哈哈发布了新的文献求助10
8秒前
哟哟哟完成签到,获得积分10
10秒前
隐形峻熙完成签到 ,获得积分10
10秒前
等DENG完成签到 ,获得积分10
11秒前
12秒前
路过的热心群众完成签到,获得积分10
13秒前
shezhinicheng完成签到 ,获得积分10
14秒前
科研通AI5应助hcy采纳,获得10
14秒前
鼻揩了转去应助jinchen采纳,获得10
15秒前
小马甲应助研友_Z1eDgZ采纳,获得10
16秒前
16秒前
善良大凄关注了科研通微信公众号
16秒前
无为发布了新的文献求助10
17秒前
JamesPei应助飞快的寒香采纳,获得10
19秒前
xiaocai发布了新的文献求助30
19秒前
爱笑的树叶完成签到,获得积分10
20秒前
sslou发布了新的文献求助20
21秒前
好好学习发布了新的文献求助10
21秒前
汉堡包应助上好佳采纳,获得10
22秒前
九星应助平淡小白菜采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557834
求助须知:如何正确求助?哪些是违规求助? 3132963
关于积分的说明 9399844
捐赠科研通 2832995
什么是DOI,文献DOI怎么找? 1557221
邀请新用户注册赠送积分活动 727141
科研通“疑难数据库(出版商)”最低求助积分说明 716197