Mobile Edge Computing, Blockchain and Reputation-based Crowdsourcing IoT Federated Learning: A Secure, Decentralized and Privacy-preserving System.

计算机科学 众包 差别隐私 块链 上传 边缘计算 新闻聚合器 下载 大数据 GSM演进的增强数据速率 计算机安全 万维网 人工智能 数据挖掘
作者
Yang Zhao,Jun Zhao,Linshan Jiang,Rui Tan,Dusit Niyato
出处
期刊:Cornell University - arXiv 被引量:81
摘要

Internet-of-Things (IoT) companies strive to get feedback from users to improve their products and services. However, traditional surveys cannot reflect the actual conditions of customers' due to the limited questions. Besides, survey results are affected by various subjective factors. In contrast, the recorded usages of IoT devices reflect customers' behaviours more comprehensively and accurately. We design an intelligent system to help IoT device manufacturers to take advantage of customers' data and build a machine learning model to predict customers' requirements and possible consumption behaviours with federated learning (FL) technology. The FL consists of two stages: in the first stage, customers train the initial model using the phone and the edge computing server collaboratively. The mobile edge computing server's high computation power can assist customers' training locally. Customers first collect data from various IoT devices using phones, and then download and train the initial model with their data. During the training, customers first extract features using their mobiles, and then add the Laplacian noise to the extracted features based on differential privacy, a formal and popular notion to quantify privacy. After achieving the local model, customers sign on their models respectively and send them to the blockchain. We use the blockchain to replace the centralized aggregator which belongs to the third party in FL. In the second stage, miners calculate the averaged model using the collected models sent from customers. By the end of the crowdsourcing job, one of the miners, who is selected as the temporary leader, uploads the model to the blockchain. Besides, to attract more customers to participate in the crowdsourcing FL, we design an incentive mechanism, which awards participants with coins that can be used to purchase other services provided by the company.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
闪闪岩完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
Hannah发布了新的文献求助10
2秒前
大大完成签到,获得积分20
3秒前
今今完成签到,获得积分10
3秒前
108实验室完成签到,获得积分20
3秒前
无花果应助LINING采纳,获得10
3秒前
一直成长完成签到,获得积分10
4秒前
4秒前
机灵的衬衫完成签到 ,获得积分10
4秒前
lhxing完成签到,获得积分10
4秒前
居居子发布了新的文献求助10
4秒前
深情安青应助dong东包采纳,获得10
5秒前
5秒前
NZH关闭了NZH文献求助
5秒前
要减肥雪冥完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
帅过彭于晏完成签到,获得积分10
6秒前
6秒前
小伙子完成签到,获得积分0
7秒前
欣慰外绣完成签到,获得积分10
7秒前
XHW完成签到,获得积分10
7秒前
LiuChuannan完成签到 ,获得积分10
8秒前
勤恳夏旋完成签到,获得积分10
8秒前
lhxing发布了新的文献求助10
8秒前
江海客完成签到,获得积分10
8秒前
wenbo完成签到,获得积分10
8秒前
哔哔鱼完成签到,获得积分10
8秒前
栗爷完成签到,获得积分0
9秒前
老德完成签到,获得积分10
9秒前
9秒前
haujiun发布了新的文献求助10
9秒前
CHENDQ完成签到,获得积分10
10秒前
Aurora发布了新的文献求助30
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934083
关于积分的说明 8466490
捐赠科研通 2607435
什么是DOI,文献DOI怎么找? 1423733
科研通“疑难数据库(出版商)”最低求助积分说明 661661
邀请新用户注册赠送积分活动 645297