摘要
Biological ReviewsVolume 49, Issue 1 p. 85-125 MECHANICS OF CILIARY LOCOMOTION JOHN R. BLAKE, JOHN R. BLAKE California Institute of Technology, Pasadena, California; Department of Zoology, University of Bristol, Bristol, England *Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, England.Search for more papers by this authorMICHAEL A. SLEIGH, MICHAEL A. SLEIGH California Institute of Technology, Pasadena, California; Department of Zoology, University of Bristol, Bristol, EnglandSearch for more papers by this author JOHN R. BLAKE, JOHN R. BLAKE California Institute of Technology, Pasadena, California; Department of Zoology, University of Bristol, Bristol, England *Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, England.Search for more papers by this authorMICHAEL A. SLEIGH, MICHAEL A. SLEIGH California Institute of Technology, Pasadena, California; Department of Zoology, University of Bristol, Bristol, EnglandSearch for more papers by this author First published: February 1974 https://doi.org/10.1111/j.1469-185X.1974.tb01299.xCitations: 171 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Aiello, E. & Sleigh, M. A. (1972). The metachronal wave of lateral cilia of Mytilus edulis. J. Cell Biol. 54, 493–506. 10.1083/jcb.54.3.493 CASPubMedWeb of Science®Google Scholar Barton, C. & Raynor, S. (1967). Analytic investigations of cilia induced mucous flow. Bull. Math. Biophys.. 29, 419–28. 10.1007/BF02476581 CASPubMedWeb of Science®Google Scholar Blake, J. R. (1971a). A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199–208. 10.1017/S002211207100048X Web of Science®Google Scholar Blake, J. R. (1971b). Infinite models for ciliary propulsion. J. Fluid Mech. 49, 209–22. 10.1017/S0022112071002027 Web of Science®Google Scholar Blake, J. R. (1971c). Self-propulsion due to oscillations on the surface of a cylinder at low Reynolds number. Bull. Aust. Math. Soc. 5, 255–64. 10.1017/S0004972700047134 Google Scholar Blake, J. R. (1972a). A model for the micro-structure in ciliated organisms. J. Fluid Mech. 55, 1–23. 10.1017/S0022112072001612 Web of Science®Google Scholar Blake, J. R. (1972b). Mechanics of ciliary propulsion. Ph.D. dissertation, University of Cambridge. Google Scholar Blake, J. R. (1973a). A note on mucus shear rates. Resp. Physiol. 17, 394–9. Google Scholar Blake, J. R. (1973b). A finite model for ciliated micro-organisms. J. Biomech, 6, 133–40. 10.1016/0021-9290(73)90082-1 CASPubMedWeb of Science®Google Scholar Blake, J. R. (1973c). Flow in tubules due to ciliary activity. Bull. Math. Biol. 35, 513–23. 10.1007/BF02575194 CASPubMedWeb of Science®Google Scholar Blake, J. R. (1974). Hydrodynamic calculations on the movements of cilia and flagella. I. Paramecium. Submitted to J. Theor. Biol. Google Scholar Brennen, C. (1974). Extended envelope models for ciliary propulsion. To be submitted to J. Fluid Mech. Google Scholar Brokaw, C. J. (1970). Bending moments in free swimming flagella. J. exp. Biol.. 53, 455–64. Google Scholar Brokaw, C. J. (1971). Bend propagation by a sliding filament model for flagella. J. exp. Biol.. 55, 289–304. 10.1242/jeb.55.2.289 CASPubMedWeb of Science®Google Scholar Brokaw, C. J. (1972). Computer simulation of flagellar movement. Biophys. J.. 12, 564–86. 10.1016/S0006-3495(72)86104-6 CASPubMedWeb of Science®Google Scholar Chwang, A. T. & Wu, T. Y. (1971). A note on the helical movements of micro-organisms. Proc. R. Soc. Lond. B178, 327–46. 10.1098/rspb.1971.0068 Web of Science®Google Scholar Cleveland, L. R. & Cleveland, B. T. (1966). The locomotory waves of Koruga, Deltotrichonympha and Mixotricha. Arch. Protistenk. 109, 39–63. Google Scholar Dirksen, E. R. & Satir, P. (1972). Ciliary activity in the mouse oviduct as studied by transmission and scanning electron microscopy. Tissue Cell. 4, 389–404. 10.1016/S0040-8166(72)80017-X CASPubMedWeb of Science®Google Scholar Eckert, R. (1972). Bioelectric control of ciliary activity. Science, N.Y.. 176, 473–81. 10.1126/science.176.4034.473 CASPubMedWeb of Science®Google Scholar Gray, J. (1928). Ciliary Movement. Cambridge University Press. Google Scholar Gray, J. (1968). Animal Locomotion. London : Wiedenfeld and Nicolson. Google Scholar Gray, J. & Hancock, G. J. (1955). The propulsion of sea-urchin spermatozoa. J. exp. Biol.. 32, 802–14. 10.1242/jeb.32.4.802 Web of Science®Google Scholar Hancock, G. J. (1953). The self propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. A217, 96–121. 10.1098/rspa.1953.0048 Web of Science®Google Scholar Harris, J. E. (1961). The mechanics of ciliary movement. In The Cell and the Organism, (ed. J. A. Ramsay and V. B. Wigglesworth), pp. 22–36. Cambridge University Press. Google Scholar Holwill, M. E. J. (1966a). Physical aspects of flagellar movement. Physiol. Rev. 46, 696–785. Web of Science®Google Scholar Holwill, M. E. J. (1966b). The movement of Euglena viridis: the role of flagella. J. exp Biol. 34, 579–88. Google Scholar Holwill, M. E. J. & Burge, R. E. (1963). A hydrodynamic study of the motility of flagellated bacteria. Archs Biochem. Biophys.. 101, 249–70. 10.1016/S0003-9861(63)80010-7 PubMedWeb of Science®Google Scholar Holwill, M. E. J. & Sleigh, M. A. (1967). Propulsion by hispid flagella. J. exp. Biol.. 47, 267–76. 10.1242/jeb.47.2.267 CASPubMedWeb of Science®Google Scholar Jahn, T. L. & Votta, J. J. (1972). Locomotion of Protozoa. Ann. Rev. Fluid Mech.. 4, 93–116. 10.1146/annurev.fl.04.010172.000521 Web of Science®Google Scholar Jeffrey, G. B. (1923). The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A102, 161–79. Google Scholar Katz, D. (1972). On the biophysics of ‘in vivo’ sperm transport. Ph.D. thesis, University of California, Berkeley. Google Scholar Knight-Jones, E. W. (1954). Relations between metachronism and the direction of ciliary beat in Metazoa. Q. Jl microsc. Sci.. 95, 503–21. Google Scholar Kuznicki, L., Jahn, T. L. & Fonseca, J. R. (1970). Helical nature of the ciliary beat of Paramecium multimicronucleatum. J. Protozool. 17, 16–24. 10.1111/j.1550-7408.1970.tb05154.x Web of Science®Google Scholar Lighthill, M. J. (1952). On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Comm. Pure Appl. Math.. 5, 109–18. 10.1002/cpa.3160050201 Web of Science®Google Scholar Lighthill, M. J. (1969). Hydromechanics of aquatic animal propulsion. A. Rev. Fluid Mech.. 1, 413–46. 10.1146/annurev.fl.01.010169.002213 Web of Science®Google Scholar Machemer, H. (1972a). Temperature influences on ciliary beat and metachronal coordination in Paramecium. J. Mechanochem. Cell Motility 1, 57–66. Google Scholar Machemer, H. (1972b). Ciliary activity and origin of metachrony in Paramecium: Effects of increased viscosity. J. exp. Biol. 57, 239–59. CASPubMedWeb of Science®Google Scholar Machemer, H. (1974). Ciliary activity and metachronism in Protozoa. In Cilia and Flagella (ed. M. A. Sleigh), pp. 199–286. London : Academic Press. (In the Press.). Google Scholar Miller, C. E. (1966). An investigation of the movement of Newtonian liquids initiated and sustained by the oscillation of mechanical cilia. Proc. 5th Cong. Appl. Mech. pp. 715–20. Google Scholar Miller, C. E. (1969). Streamlines and particle path lines associated with a mechanically induced flow homomorphic with the mammalian mucociliary system. Biorheol.. 6, 127–35. CASPubMedGoogle Scholar Parducz, B. (1967). Ciliary movements and coordination in ciliates. Int. Rev. Cytol.. 21, 91–128. 10.1016/S0074-7696(08)60812-8 PubMedGoogle Scholar Prandtl, L. (1952). Essentials of Fluid Dynamics. London : Blackie. Google Scholar Reid, L. (1970). Chronic bronchitis — A report on mucus research. Proc. R. Instn Gt Br.. 43, 438–63. CASGoogle Scholar Reynolds, A. J. (1965). The swimming of minute organisms. J. Fluid Mech.. 23, 241–60. 10.1017/S0022112065001337 Web of Science®Google Scholar Rikmenspoel, R. & Sleigh, M. A. (1970). Bending moments and elastic constants in cilia. J. Theor. Biol.. 28, 81–100. 10.1016/0022-5193(70)90065-2 CASPubMedWeb of Science®Google Scholar Ross, S. M. (1971). A wavy wall analytic model of muco-ciliary pumping. Ph.D. dissertation, John Hopkins University. Google Scholar Satir, P. (1968). Studies on cilia. III. Further studies on the cilium tip and a ‘sliding filament’ model of ciliary motility. J. Cell Biol.. 39, 77–94. 10.1083/jcb.39.1.77 PubMedWeb of Science®Google Scholar Schreiner, K. E. (1971). The helix as a propeller of micro-organisms. J. Biomech.. 4, 73–83. 10.1016/0021-9290(71)90017-0 CASPubMedWeb of Science®Google Scholar Shack, W. J. & Lardner, T. J. (1972). Cilia transport. Bull. Math. Biophys.. 34, 325–35. 10.1007/BF02476445 PubMedWeb of Science®Google Scholar Sleigh, M. A. (1960). The form of beat in cilia of Stentor and Opalina. J. exp. Biol. 37, 1–10. Web of Science®Google Scholar Sleigh, M. A. (1962). The biology of cilia and flagella. London : Pergamon. 10.5962/bhl.title.4525 Google Scholar Sleigh, M. A. (1966). The coordination and control of cilia. Symp. Soc. exp. Biol.. 20, 11–31. CASPubMedGoogle Scholar Sleigh, M. A. (1968). Patterns of ciliary beating. Symp. Soc. exp. Biol.. 22, 131–50. CASPubMedGoogle Scholar Sleigh, M. A. (1969). Coordination of the rhythm of beat in some ciliary systems. Int. Rev. Cytol.. 25, 31–54. 10.1016/S0074-7696(08)60200-4 CASPubMedGoogle Scholar Sleigh, M. A. (1971). Cilia. Endeavour. 30, 11–17. CASPubMedWeb of Science®Google Scholar Sleigh, M. A. (1972). Features of ciliary movement of the ctenophores Beroe, Pleurobrachia and Cestus. In Essays in Hydrobiology (ed. R. B. Clark and R. S. Wootton), pp. 119–36. University of Exeter. Google Scholar Sleigh, M. A. (1973). The Biology of Protozoa. London : Edward Arnold. Google Scholar M. A. Sleigh, (ed.) (1974). Cilia and Flagella. London : Academic Press. (In the press). Google Scholar Sleigh, M. A. & Aiello, E. (1972). The movement of water by cilia. Acta Protozool.. 11, 265–77. Google Scholar Sleigh, M. A. & Holwill, M. E. J. (1969). Energetics of ciliary movement in Sabellaria and Mytilus. J. exp. Biol. 50, 733–43. CASPubMedWeb of Science®Google Scholar Summers, K. E. & Gibbons, I. R. (1971). Adenosine triphosphate-induced sliding of tubules in trypsintreated flagella of sea-urchin sperm. Proc. natn Acad. Sci. U.S.A.. 68, 3092–6. 10.1073/pnas.68.12.3092 CASPubMedWeb of Science®Google Scholar Tamm, S. L. (1972). Ciliary motion in Paramecium. J. Cell Biol. 55, 250–5. 10.1083/jcb.55.1.250 CASPubMedWeb of Science®Google Scholar Tamm, S. L. & Horridge, G. A. (1970). The relation between the orientation of the central fibrils and the direction of beat in cilia of Opalina. Proc. R. Soc. Lond, B175, 219–33. 10.1098/rspb.1970.0020 Web of Science®Google Scholar Taylor, G. I. (1951). Analysis of swimming of microscopic organisms. Proc. R. Soc. Lond. A209, 447–61. 10.1098/rspa.1951.0218 Web of Science®Google Scholar Taylor, G. I. (1952a). The action of waving cylindrical tails in propelling microscopic organisms. Proc. R. Soc. Lond. A 211, 225–39. 10.1098/rspa.1952.0035 Web of Science®Google Scholar Taylor, G. I. (1952b). Analysis of the swimming of long and narrow animals. Proc. R. Soc. Lond. A214, 158–83. 10.1098/rspa.1952.0159 Web of Science®Google Scholar Taylor, G. I. (1967). Film: Low Reynolds number flows. Ed. Devel. Cen. Inc.. Google Scholar Tuck, E. O. (1968). A note on a swimming problem. J. Fluid Mech.. 31, 305–8. 10.1017/S0022112068000169 Web of Science®Google Scholar Weihs, D. (1972). A hydrodynamical analysis of fish turning manoeuvres. Proc. R. Soc. Lond. B182, 59–72. 10.1098/rspb.1972.0066 Web of Science®Google Scholar Winet, H. (1969). Film: Flow field over swimming ciliated cells. California Institue of Technology. Google Scholar Wu, T. Y. (1971a). Hydromechanics of swimming propulsion, I. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 46, 337–55. 10.1017/S0022112071000570 Web of Science®Google Scholar Wu, T. Y. (1971b). Hydromechanics of swimming propulsion. II. Some optimum shape problems. J. Fluid Mech. 46, 521–44. 10.1017/S0022112071000685 Web of Science®Google Scholar Wu, T. Y. (1971c). Hydromechanics of swimming propulsion. III. Swimming and optimum movements of slender fish with side fins. J. Fluid Mech. 46, 545–68. 10.1017/S0022112071000697 Web of Science®Google Scholar Wu, T. Y. & Newman, J. N. (1972). Unsteady flow around a slender fish-like body. J. Mech. Eng. Sci.. 14 (7), 43–52.Suppl. Issue. 10.1243/JMES_JOUR_1972_014_062_02 Web of Science®Google Scholar Citing Literature Volume49, Issue1February 1974Pages 85-125 ReferencesRelatedInformation