A Nonlinear Automatic History Matching Technique for Reservoir Simulation Models

航程(航空) 储层模拟 非线性系统 匹配(统计) 计算机科学 集合(抽象数据类型) 算法 领域(数学) 约束(计算机辅助设计) 数学优化 应用数学 数学 工程类 统计 石油工程 物理 几何学 量子力学 纯数学 程序设计语言 航空航天工程
作者
L. K. Thomas,L.J. Hellums,G.M. Reheis
出处
期刊:Society of Petroleum Engineers Journal 卷期号:12 (06): 508-514 被引量:56
标识
DOI:10.2118/3475-pa
摘要

Abstract This paper presents a nonlinear optimization technique that automatically varies reservoir parameters to obtain a history match of held parameters to obtain a history match of held performance. The method is based on the classical performance. The method is based on the classical Gauss-Newton least-squares procedure. The range of each parameter is restricted by a box-type constraint and special provisions are included to handle highly nonlinear cases. Any combination of reservoir parameters may be used as the optimization variables and any set or sets of held data may be included in the match. Several history matches are presented, including examples from previous papers for comparison. In each of these examples, the technique presented here resulted in equivalent history matches in as few or fewer simulation runs. Introduction The history matching phase of reservoir simulations usually requires a trial-and-error procedure of adjusting various reservoir parameters procedure of adjusting various reservoir parameters and then calculating field performance. This procedure is continued until an acceptable match procedure is continued until an acceptable match between field and calculated performance has been obtained and can become quite tedious and time consuming, even with a small number of reservoir parameters, because of the interaction between the parameters, because of the interaction between the parameters and calculated performance. parameters and calculated performance. Recently various automatic or semiautomatic history-matching techniques have been introduced. Jacquard and Jain presented a technique based on a version of the method of steepest descent. They did not consider their method to be fully operational, however, due to the lack of experience with convergence. Jahns presented a method based on the Gauss-Newton equation with a stepwise solution for speeding convergence; but his procedure still required a large number of reservoir simulations to proceed to a solution. Coats et al. presented a proceed to a solution. Coats et al. presented a workable automatic history-matching procedure based on least-squares and linear programming. The method presented by Slater and Durrer is based on a gradient method and linear programming. In their paper they mention the difficulty of choosing a step paper they mention the difficulty of choosing a step size for their gradient method, especially for problems involving low values of porosity and problems involving low values of porosity and permeability. They also point out the need for a permeability. They also point out the need for a fairly small range on their reservoir description parameters for highly nonlinear problems. Thus, parameters for highly nonlinear problems. Thus, work in this area to date has resulted either in techniques based on a linear parameter-error dependence or in nonlinear techniques which require a considerable number of simulation runs. The method presented here is a nonlinear algorithm that will match both linear and nonlinear systems in a reasonable number of simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
落山姬发布了新的文献求助10
1秒前
科研顺利完成签到,获得积分20
2秒前
科研通AI5应助Qianwy采纳,获得10
2秒前
3秒前
坦率的无剑完成签到,获得积分20
4秒前
4秒前
坦率的无剑关注了科研通微信公众号
7秒前
8秒前
halabouqii完成签到,获得积分10
9秒前
11秒前
11秒前
11秒前
SciGPT应助粗暴的西装采纳,获得10
12秒前
尊敬的惠发布了新的文献求助10
12秒前
叉叉茶完成签到 ,获得积分10
13秒前
仵一发布了新的文献求助10
15秒前
科研顺利发布了新的文献求助30
17秒前
平淡小白菜完成签到,获得积分10
17秒前
123发布了新的文献求助10
18秒前
23秒前
23秒前
jeopardy完成签到,获得积分10
24秒前
24秒前
万能图书馆应助Rui采纳,获得10
25秒前
所所应助jayandkobe采纳,获得10
25秒前
27秒前
Crystal完成签到,获得积分10
27秒前
Oracle应助默默乘云采纳,获得20
27秒前
b15966013195发布了新的文献求助30
30秒前
欣慰外套完成签到 ,获得积分10
31秒前
文艺谷蓝完成签到,获得积分10
31秒前
酷波er应助jeopardy采纳,获得10
33秒前
33秒前
jin发布了新的文献求助10
34秒前
LGJ完成签到,获得积分10
35秒前
听话的清发布了新的文献求助10
36秒前
37秒前
CipherSage应助123采纳,获得10
37秒前
仵一完成签到,获得积分10
38秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
Andrew Duncan Senior: Physician of the Enlightenment 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3683321
求助须知:如何正确求助?哪些是违规求助? 3234685
关于积分的说明 9816010
捐赠科研通 2946334
什么是DOI,文献DOI怎么找? 1615527
邀请新用户注册赠送积分活动 762981
科研通“疑难数据库(出版商)”最低求助积分说明 737642