传播子
半经典物理学
操作员(生物学)
系列(地层学)
费曼图
指数
幂级数
路径积分公式
扩展系列
数学物理
基质(化学分析)
指数函数
物理
量子
递归(计算机科学)
密度矩阵
量子力学
数学
数学分析
化学
材料科学
复合材料
算法
抑制因子
古生物学
哲学
语言学
基因
生物
转录因子
生物化学
作者
Nancy Makri,William H. Miller
摘要
The coordinate matrix element of the time evolution operator, exp[−iĤt/ℏ], is determined by expanding (its exponent) in a power series in t. Recursion relations are obtained for the expansion coefficients which can be analytically evaluated for any number of degrees of freedom. Numerical application to the tunneling matrix element in a double well potential and to the reactive flux correlation function for a barrier potential show this approach to be a dramatic improvement over the standard short time approximation for the propagator. Its use in a Feynman path integral means that fewer ‘‘time slices’’ in the matrix product exp[(−i/ℏ)ΔtĤ]N, Δt=t/N, will be required. The first few terms in the present expansion constitute a fully quantum version of the short time propagator recently obtained by us using semiclassical methods [Chem. Phys. Lett. 151, 1 (1988)].
科研通智能强力驱动
Strongly Powered by AbleSci AI