Bayesian-network-based safety risk analysis in construction projects

贝叶斯网络 故障树分析 模糊逻辑 工程类 可靠性工程 数据挖掘 风险分析(工程) 不确定度分析 施工现场安全 模糊集 风险管理 危害 计算机科学 机器学习 人工智能 结构工程 医学 化学 管理 有机化学 经济 模拟
作者
Limao Zhang,Xianguo Wu,Mirosław J. Skibniewski,Jingbing Zhong,Yujie Lu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:131: 29-39 被引量:230
标识
DOI:10.1016/j.ress.2014.06.006
摘要

This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孙绪鹏发布了新的文献求助10
1秒前
AL发布了新的文献求助10
2秒前
共享精神应助左丘冥采纳,获得10
2秒前
2秒前
罗八七完成签到,获得积分10
2秒前
哈哈完成签到,获得积分10
3秒前
俭朴大开完成签到,获得积分10
3秒前
3秒前
朱祥龙完成签到,获得积分10
3秒前
lalala发布了新的文献求助10
3秒前
4秒前
尊敬薯片完成签到,获得积分20
4秒前
阳光的访枫完成签到 ,获得积分10
5秒前
意意发布了新的文献求助10
6秒前
6秒前
乐观含巧完成签到,获得积分10
7秒前
bkagyin应助zwenng采纳,获得10
7秒前
8秒前
ll发布了新的文献求助10
8秒前
8秒前
星辰大海应助乘风采纳,获得10
10秒前
10秒前
11秒前
爆米花应助橖子小姐采纳,获得10
11秒前
lihongchi发布了新的文献求助10
12秒前
大腿弟完成签到,获得积分10
13秒前
慕青应助hai采纳,获得10
14秒前
句号发布了新的文献求助50
14秒前
一生所爱完成签到,获得积分10
15秒前
16秒前
Doki发布了新的文献求助10
16秒前
Junex发布了新的文献求助10
17秒前
王利完成签到,获得积分10
17秒前
董家小生完成签到,获得积分10
19秒前
19秒前
21秒前
21秒前
激动的士萧完成签到,获得积分10
22秒前
Gatita完成签到 ,获得积分10
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803043
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302778
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237