Bayesian-network-based safety risk analysis in construction projects

贝叶斯网络 故障树分析 模糊逻辑 工程类 可靠性工程 数据挖掘 风险分析(工程) 不确定度分析 施工现场安全 模糊集 风险管理 危害 计算机科学 机器学习 人工智能 结构工程 医学 模拟 经济 有机化学 化学 管理
作者
Limao Zhang,Xianguo Wu,Mirosław J. Skibniewski,Jingbing Zhong,Yujie Lu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:131: 29-39 被引量:230
标识
DOI:10.1016/j.ress.2014.06.006
摘要

This paper presents a systemic decision support approach for safety risk analysis under uncertainty in tunnel construction. Fuzzy Bayesian Networks (FBN) is used to investigate causal relationships between tunnel-induced damage and its influential variables based upon the risk/hazard mechanism analysis. Aiming to overcome limitations on the current probability estimation, an expert confidence indicator is proposed to ensure the reliability of the surveyed data for fuzzy probability assessment of basic risk factors. A detailed fuzzy-based inference procedure is developed, which has a capacity of implementing deductive reasoning, sensitivity analysis and abductive reasoning. The “3σ criterion” is adopted to calculate the characteristic values of a triangular fuzzy number in the probability fuzzification process, and the α-weighted valuation method is adopted for defuzzification. The construction safety analysis progress is extended to the entire life cycle of risk-prone events, including the pre-accident, during-construction continuous and post-accident control. A typical hazard concerning the tunnel leakage in the construction of Wuhan Yangtze Metro Tunnel in China is presented as a case study, in order to verify the applicability of the proposed approach. The results demonstrate the feasibility of the proposed approach and its application potential. A comparison of advantages and disadvantages between FBN and fuzzy fault tree analysis (FFTA) as risk analysis tools is also conducted. The proposed approach can be used to provide guidelines for safety analysis and management in construction projects, and thus increase the likelihood of a successful project in a complex environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美电脑发布了新的文献求助10
1秒前
顾矜应助麦子采纳,获得10
3秒前
gym完成签到,获得积分10
3秒前
云菲菲完成签到,获得积分20
4秒前
香蕉觅云应助失眠奥特曼采纳,获得10
5秒前
神勇的板栗完成签到,获得积分20
5秒前
luo2完成签到,获得积分20
5秒前
6秒前
6秒前
落寞依珊应助麒麟采纳,获得20
7秒前
7秒前
8秒前
健康的雁开完成签到,获得积分20
8秒前
李星啸发布了新的文献求助10
8秒前
wise111发布了新的文献求助10
8秒前
px发布了新的文献求助10
9秒前
打打应助EthanChan采纳,获得10
9秒前
10秒前
Owen应助小巧富采纳,获得10
11秒前
领导范儿应助Marina采纳,获得20
11秒前
leeeeee完成签到,获得积分10
12秒前
鸣笛应助优美电脑采纳,获得80
13秒前
13秒前
领导范儿应助qyang采纳,获得10
13秒前
酷炫元风发布了新的文献求助10
13秒前
留白留白完成签到,获得积分10
14秒前
gym发布了新的文献求助10
14秒前
yhhy完成签到,获得积分10
15秒前
16秒前
蝈蝈发布了新的文献求助10
18秒前
xnshina发布了新的文献求助50
18秒前
19秒前
yyh发布了新的文献求助30
19秒前
新科研熊完成签到,获得积分10
20秒前
20秒前
ta发布了新的文献求助100
21秒前
科研通AI5应助酷炫元风采纳,获得10
21秒前
大气思菱完成签到,获得积分10
21秒前
青青子衿完成签到,获得积分10
21秒前
Elanie完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629