生物
分区(防火)
基因调控网络
稳健性(进化)
计算生物学
昼夜节律
细胞生物学
系统生物学
基因
神经科学
遗传学
生物化学
基因表达
酶
作者
Yumi Kim,Seungmin Han,Miji Yeom,Hyunmin Kim,Junhyun Lim,Joon‐Yung Cha,Woe‐Yeon Kim,David E. Somers,Joanna Putterill,Hong Gil Nam,Daehee Hwang
标识
DOI:10.1016/j.devcel.2013.06.006
摘要
Biological networks consist of a defined set of regulatory motifs. Subcellular compartmentalization of regulatory molecules can provide a further dimension in implementing regulatory motifs. However, spatial regulatory motifs and their roles in biological networks have rarely been explored. Here we show, using experimentation and mathematical modeling, that spatial segregation of GIGANTEA (GI), a critical component of plant circadian systems, into nuclear and cytosolic compartments leads to differential functions as positive and negative regulators of the circadian core gene, LHY, forming an incoherent feedforward loop to regulate LHY. This regulatory motif formed by nucleocytoplasmic partitioning of GI confers, through the balanced operation of the nuclear and cytosolic GI, strong rhythmicity and robustness to external and internal noises to the circadian system. Our results show that spatial and functional segregation of a single molecule species into different cellular compartments provides a means for extending the regulatory capabilities of biological networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI