肝X受体
癌症研究
干扰素
细胞因子
磷酸化
生物
干扰素γ
激酶
蛋白激酶A
生长抑制
分子生物学
转录因子
细胞生长
免疫学
细胞生物学
核受体
生物化学
基因
作者
Xingzhe Ma,Qixue Wang,Ying Liu,Yuanli Chen,Ling Zhang,Meixiu Jiang,Xiaoju Li,Rong Xiang,Qing Miao,Yajun Duan,Jihong Han
摘要
Several MEK1/2 inhibitors have been in clinical trial evaluation for cancer treatment. Interferon-γ (IFN-γ) is a cytokine with multiple biological functions including antitumor activity. Expression of IFN-γ can be induced by liver X receptor (LXR), a ligand-activated transcription factor. However, it remains unknown if the anti-cancer action of MEK1/2 inhibitors is completed, at least in part, by activating IFN-γ expression. In this study, we determined that U0126, a MEK1/2 inhibitor, increased tumor-free and survival rates and decreased growth of inoculated Lewis lung carcinomas in wild type mice. However, the protective effects were substantially attenuated in IFN-γ deficient (IFN-γ-/-) mice. At cellular and molecular levels, MEK1/2 inhibitors increased IFN-γ protein and mRNA expression and activated natural IFN-γ promoter but not the IFN-γ promoters with mutations of the LXR responsive elements (LXREs). MEK1/2 inhibitors also enhanced formation of the LXRE-nuclear protein complexes by inducing LXR expression and nuclear translocation. Similarly, MEK1/2 siRNA inhibited phosphorylation of ERK1/2 by MEK1/2 while activated IFN-γ expression. In contrast, inhibition of LXR expression by siRNA blocked MEK1/2 inhibitors-induced IFN-γ expression. U0126 also inhibited chemicals-induced pulmonary carcinomas, which was associated with increased IFN-γ expression in the lung. Taken together, our study suggests that MEK1/2 inhibitors induce IFN-γ production in an LXR-dependent manner and the induction of IFN-γ expression can partially contribute to the anti-tumorigenic properties of U0126.
科研通智能强力驱动
Strongly Powered by AbleSci AI