Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans

生物塑料 羟基烷酸 蔗渣 纤维素 纤维素乙醇 制浆造纸工业 聚羟基丁酸酯 化学 生物量(生态学) 木质素 纤维二糖 木糖 食品科学 生物转化 生物技术 生物化学 纤维素酶 生物 有机化学 发酵 农学 生态学 遗传学 细菌 工程类
作者
Luis E. Muñoz,Mark R. Riley
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:100 (5): 882-888 被引量:93
标识
DOI:10.1002/bit.21854
摘要

Utilization of wastes from agriculture is becoming increasingly important due to concerns of environmental impact. The goals of this work were to evaluate the ability of an unusual organism, Saccharophagus degradans (ATCC 43961), to degrade the major components of plant cell walls and to evaluate the ability of S. degradans to produce polyhydroxyalkanoates (PHAs, also known as bioplastics). S. degradans can readily attach to cellulosic fibers, degrade the cellulose, and utilize this as the primary carbon source. The growth of S. degradans was assessed in minimal media (MM) containing glucose, cellobiose, avicel, and bagasse with all able to support growth. Cells were able to attach to avicel and bagasse fibers; however, growth on these insoluble fibers was much slower and led to a lower maximal biomass production than observed with simple sugars. Lignin in MM alone did not support growth, but did support growth upon addition of glucose, although with an increased adaptation phase. When culture conditions were switched to a nitrogen depleted status, PHA production commences and extends for at least 48 h. At early stationary phase, stained inclusion bodies were visible and two chronologically increasing infrared light absorbance peaks at 1,725 and 1,741 cm(-1) confirmed the presence of PHAs. This work demonstrates for what we believe to be the first time, that a single organism can degrade insoluble cellulose and under similar conditions can produce and accumulate PHA. Additional work is necessary to more fully characterize these capabilities and to optimize the PHA production and purification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18117847520发布了新的文献求助10
刚刚
吃猫的鱼发布了新的文献求助10
刚刚
所所应助柳致毓采纳,获得10
2秒前
3秒前
orixero应助smile~采纳,获得10
3秒前
4秒前
汉堡包应助SS采纳,获得10
4秒前
hugoh发布了新的文献求助10
4秒前
kacoco完成签到,获得积分10
5秒前
6秒前
烟花应助xii采纳,获得10
6秒前
7秒前
8秒前
8秒前
8秒前
wenrounan发布了新的文献求助10
9秒前
hugoh完成签到,获得积分10
9秒前
erin发布了新的文献求助10
9秒前
小羊完成签到 ,获得积分10
10秒前
ding应助孤独碧空采纳,获得10
12秒前
12秒前
12秒前
许星意发布了新的文献求助20
13秒前
13秒前
13秒前
13秒前
yangyang发布了新的文献求助10
14秒前
陈胖虎发布了新的文献求助10
14秒前
天天喝金线莲完成签到,获得积分10
15秒前
SS完成签到,获得积分10
15秒前
小米完成签到,获得积分10
17秒前
17秒前
小石头发布了新的文献求助10
18秒前
柳致毓发布了新的文献求助10
18秒前
山栀茶完成签到,获得积分10
20秒前
20秒前
情怀应助minmin采纳,获得10
20秒前
爆米花应助hjygzv采纳,获得10
22秒前
田様应助111采纳,获得10
23秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454714
求助须知:如何正确求助?哪些是违规求助? 3049977
关于积分的说明 9019871
捐赠科研通 2738696
什么是DOI,文献DOI怎么找? 1502218
科研通“疑难数据库(出版商)”最低求助积分说明 694438
邀请新用户注册赠送积分活动 693125