Acquisition of earthworm-like movement patterns of many-segmented peristaltic crawling robots

爬行 机器人 计算机科学 蠕动 运动(音乐) 人工智能 功能(生物学) 强化学习 计算机视觉 物理 解剖 声学 医学 进化生物学 生物
作者
Norihiko Saga,Satoshi Tesen,Toshiyuki Sato,Jun‐ya Nagase
出处
期刊:International Journal of Advanced Robotic Systems [SAGE Publishing]
卷期号:13 (5) 被引量:14
标识
DOI:10.1177/1729881416657740
摘要

In recent years, attention has been increasingly devoted to the development of rescue robots that can protect humans from the inherent risks of rescue work. Particularly, anticipated is the development of a robot that can move deeply through small spaces. We have devoted our attention to peristalsis, the movement mechanism used by earthworms. A reinforcement learning technique used for the derivation of the robot movement pattern, Q-learning, was used to develop a three-segmented peristaltic crawling robot with a motor drive. Characteristically, peristalsis can provide movement capability if at least three segments work, even if a segmented part does not function. Therefore, we had intended to derive the movement pattern of many-segmented peristaltic crawling robots using Q-learning. However, because of the necessary increase in calculations, in the case of many segments, Q-learning cannot be used because of insufficient memory. Therefore, we devoted our attention to a learning method called Actor–Critic, which can be implemented with low memory. Because Actor-Critic methods are TD methods that have a separate memory structure to explicitly represent the policy independent of the value function. Using it, we examined the movement patterns of six-segmented peristaltic crawling robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓布利多多完成签到,获得积分20
刚刚
刚刚
战魂完成签到,获得积分20
刚刚
JHzazaza发布了新的文献求助10
1秒前
pophoo发布了新的文献求助10
1秒前
2秒前
3秒前
Febrine0502完成签到,获得积分10
3秒前
粗暴的友绿完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
爆米花应助阿良采纳,获得10
5秒前
Riggle G发布了新的文献求助10
6秒前
MYunn完成签到,获得积分10
6秒前
6秒前
科研小菜狗完成签到,获得积分10
7秒前
8秒前
8秒前
lixian完成签到,获得积分20
8秒前
Lucas应助玉米小胚采纳,获得10
8秒前
上官若男应助MAYFLYDAYS采纳,获得10
8秒前
账户已注销完成签到,获得积分0
9秒前
9秒前
汉堡包应助孝顺的雁芙采纳,获得10
10秒前
在水一方应助JHzazaza采纳,获得10
10秒前
乐乐应助牛马采纳,获得10
11秒前
11秒前
11秒前
佳啊完成签到 ,获得积分10
11秒前
阿强哥20241101完成签到,获得积分10
11秒前
12秒前
dyvdyvaass完成签到 ,获得积分10
12秒前
cxt关注了科研通微信公众号
13秒前
13秒前
Di完成签到 ,获得积分10
14秒前
14秒前
复杂念梦完成签到 ,获得积分10
14秒前
15秒前
vagary完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969383
求助须知:如何正确求助?哪些是违规求助? 3514211
关于积分的说明 11172730
捐赠科研通 3249476
什么是DOI,文献DOI怎么找? 1794909
邀请新用户注册赠送积分活动 875441
科研通“疑难数据库(出版商)”最低求助积分说明 804827