Cross-Domain Missingness-Aware Time-Series Adaptation With Similarity Distillation in Medical Applications

计算机科学 缺少数据 相似性(几何) 领域(数学分析) 数据挖掘 系列(地层学) 时间序列 人工智能 机器学习 特征(语言学) 数学 数学分析 哲学 图像(数学) 生物 古生物学 语言学
作者
Baoyao Yang,Mang Ye,Qingxiong Tan,Pong C. Yuen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (5): 3394-3407 被引量:14
标识
DOI:10.1109/tcyb.2020.3011934
摘要

Medical time series of laboratory tests has been collected in electronic health records (EHRs) in many countries. Machine-learning algorithms have been proposed to analyze the condition of patients using these medical records. However, medical time series may be recorded using different laboratory parameters in different datasets. This results in the failure of applying a pretrained model on a test dataset containing a time series of different laboratory parameters. This article proposes to solve this problem with an unsupervised time-series adaptation method that generates time series across laboratory parameters. Specifically, a medical time-series generation network with similarity distillation is developed to reduce the domain gap caused by the difference in laboratory parameters. The relations of different laboratory parameters are analyzed, and the similarity information is distilled to guide the generation of target-domain specific laboratory parameters. To further improve the performance in cross-domain medical applications, a missingness-aware feature extraction network is proposed, where the missingness patterns reflect the health conditions and, thus, serve as auxiliary features for medical analysis. In addition, we also introduce domain-adversarial networks in both feature level and time-series level to enhance the adaptation across domains. Experimental results show that the proposed method achieves good performance on both private and publicly available medical datasets. Ablation studies and distribution visualization are provided to further analyze the properties of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
深情安青应助wei采纳,获得10
1秒前
1秒前
标致的方盒完成签到,获得积分10
2秒前
萱萱发布了新的文献求助10
2秒前
Lucas应助清秀涵易采纳,获得10
4秒前
7qi完成签到,获得积分10
4秒前
小超人发布了新的文献求助20
4秒前
4秒前
4秒前
小蘑菇应助yalan采纳,获得10
4秒前
5秒前
jfaioe完成签到,获得积分10
6秒前
7秒前
唐晓秦完成签到,获得积分10
7秒前
汉堡包应助玩命的化蛹采纳,获得10
7秒前
8秒前
张益萌给WH的求助进行了留言
9秒前
搜集达人应助千与千寻采纳,获得10
9秒前
墨殇璃完成签到,获得积分10
10秒前
折花浅笑完成签到,获得积分10
10秒前
华仔应助Jc采纳,获得10
10秒前
11秒前
典典发布了新的文献求助10
11秒前
yalan完成签到,获得积分10
12秒前
chenman9397完成签到 ,获得积分10
12秒前
呆萌语梦完成签到,获得积分10
13秒前
13秒前
17秒前
爆米花应助MQ&FF采纳,获得10
17秒前
贪玩枫叶完成签到 ,获得积分10
18秒前
星辰大海应助laomuzhu采纳,获得10
18秒前
19秒前
大个应助可爱的霖霖兔采纳,获得10
19秒前
毛豆完成签到,获得积分0
19秒前
萱萱完成签到,获得积分10
20秒前
20秒前
失眠的友卉完成签到,获得积分10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295786
求助须知:如何正确求助?哪些是违规求助? 2931649
关于积分的说明 8453323
捐赠科研通 2604317
什么是DOI,文献DOI怎么找? 1421619
科研通“疑难数据库(出版商)”最低求助积分说明 661048
邀请新用户注册赠送积分活动 644016