已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-Domain Missingness-Aware Time-Series Adaptation With Similarity Distillation in Medical Applications

计算机科学 缺少数据 相似性(几何) 领域(数学分析) 数据挖掘 系列(地层学) 时间序列 人工智能 机器学习 特征(语言学) 数学 数学分析 哲学 图像(数学) 生物 古生物学 语言学
作者
Baoyao Yang,Mang Ye,Qingxiong Tan,Pong C. Yuen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (5): 3394-3407 被引量:14
标识
DOI:10.1109/tcyb.2020.3011934
摘要

Medical time series of laboratory tests has been collected in electronic health records (EHRs) in many countries. Machine-learning algorithms have been proposed to analyze the condition of patients using these medical records. However, medical time series may be recorded using different laboratory parameters in different datasets. This results in the failure of applying a pretrained model on a test dataset containing a time series of different laboratory parameters. This article proposes to solve this problem with an unsupervised time-series adaptation method that generates time series across laboratory parameters. Specifically, a medical time-series generation network with similarity distillation is developed to reduce the domain gap caused by the difference in laboratory parameters. The relations of different laboratory parameters are analyzed, and the similarity information is distilled to guide the generation of target-domain specific laboratory parameters. To further improve the performance in cross-domain medical applications, a missingness-aware feature extraction network is proposed, where the missingness patterns reflect the health conditions and, thus, serve as auxiliary features for medical analysis. In addition, we also introduce domain-adversarial networks in both feature level and time-series level to enhance the adaptation across domains. Experimental results show that the proposed method achieves good performance on both private and publicly available medical datasets. Ablation studies and distribution visualization are provided to further analyze the properties of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心的火车完成签到 ,获得积分10
1秒前
2秒前
酷波er应助科研通管家采纳,获得10
5秒前
Mesting发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
新晋学术小生完成签到 ,获得积分10
7秒前
Trailblazer发布了新的文献求助30
7秒前
7秒前
Sunny完成签到 ,获得积分10
8秒前
裴向雪发布了新的文献求助10
9秒前
wyy发布了新的文献求助10
9秒前
1307发布了新的文献求助10
9秒前
10秒前
geoman发布了新的文献求助10
11秒前
羊羊羊发布了新的文献求助10
11秒前
gyl发布了新的文献求助10
14秒前
平淡惋清完成签到,获得积分10
15秒前
hh留下了新的社区评论
15秒前
可爱的函函应助wyy采纳,获得10
16秒前
Georges-09完成签到,获得积分10
17秒前
Liz完成签到,获得积分10
18秒前
Trailblazer完成签到,获得积分10
18秒前
英姑应助YY采纳,获得10
19秒前
cheng发布了新的文献求助10
21秒前
思源应助心内小白采纳,获得10
24秒前
魔幻安筠发布了新的文献求助10
25秒前
26秒前
海潮发布了新的文献求助10
28秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968024
求助须知:如何正确求助?哪些是违规求助? 3513050
关于积分的说明 11166224
捐赠科研通 3248224
什么是DOI,文献DOI怎么找? 1794124
邀请新用户注册赠送积分活动 874880
科研通“疑难数据库(出版商)”最低求助积分说明 804610