Cross-Domain Missingness-Aware Time-Series Adaptation With Similarity Distillation in Medical Applications

计算机科学 缺少数据 相似性(几何) 领域(数学分析) 数据挖掘 系列(地层学) 时间序列 人工智能 机器学习 特征(语言学) 数学 数学分析 古生物学 语言学 哲学 图像(数学) 生物
作者
Baoyao Yang,Mang Ye,Qingxiong Tan,Pong C. Yuen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (5): 3394-3407 被引量:16
标识
DOI:10.1109/tcyb.2020.3011934
摘要

Medical time series of laboratory tests has been collected in electronic health records (EHRs) in many countries. Machine-learning algorithms have been proposed to analyze the condition of patients using these medical records. However, medical time series may be recorded using different laboratory parameters in different datasets. This results in the failure of applying a pretrained model on a test dataset containing a time series of different laboratory parameters. This article proposes to solve this problem with an unsupervised time-series adaptation method that generates time series across laboratory parameters. Specifically, a medical time-series generation network with similarity distillation is developed to reduce the domain gap caused by the difference in laboratory parameters. The relations of different laboratory parameters are analyzed, and the similarity information is distilled to guide the generation of target-domain specific laboratory parameters. To further improve the performance in cross-domain medical applications, a missingness-aware feature extraction network is proposed, where the missingness patterns reflect the health conditions and, thus, serve as auxiliary features for medical analysis. In addition, we also introduce domain-adversarial networks in both feature level and time-series level to enhance the adaptation across domains. Experimental results show that the proposed method achieves good performance on both private and publicly available medical datasets. Ablation studies and distribution visualization are provided to further analyze the properties of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助左左采纳,获得30
刚刚
1秒前
姚盈盈发布了新的文献求助10
1秒前
orixero应助energetic采纳,获得10
1秒前
yaoyao6688发布了新的文献求助30
1秒前
2秒前
科研通AI6应助灵巧涵雁采纳,获得10
2秒前
2秒前
头哥应助如意幼枫采纳,获得10
2秒前
2秒前
3秒前
3秒前
科研通AI6应助善良谷蓝采纳,获得10
3秒前
是个宝耶完成签到 ,获得积分10
3秒前
3秒前
甜野发布了新的文献求助10
4秒前
可爱的函函应助liuuu采纳,获得10
4秒前
4秒前
Markov发布了新的文献求助30
4秒前
5秒前
文献自由发布了新的文献求助10
6秒前
orixero应助古德猫宁采纳,获得10
6秒前
从容映易完成签到,获得积分10
6秒前
6秒前
阿卡啵糖发布了新的文献求助10
7秒前
催催催发布了新的文献求助10
7秒前
hehe完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
一天给一天的求助进行了留言
10秒前
10秒前
10秒前
大模型应助搞怪的听蓉采纳,获得10
10秒前
如意幼枫完成签到,获得积分10
11秒前
隐形曼青应助hehe采纳,获得10
11秒前
YJ发布了新的文献求助10
12秒前
12秒前
JamesPei应助宝宝采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674