Computational time-resolved imaging, single-photon sensing, and non-line-of-sight imaging

探测器 帧速率 计算机科学 光子 雪崩光电二极管 医学影像学 影像学 超短脉冲 光学(聚焦) 光学 光子计数 物理 计算机视觉 人工智能 激光器
作者
David B. Lindell,Matthew O’Toole,Srinivasa G. Narasimhan,Ramesh Raskar
标识
DOI:10.1145/3388769.3407481
摘要

Emerging detector technologies are capable of ultrafast capture of single photons, enabling imaging at the speed of light. Not only can these detectors be used for imaging at essentially trillion frame-per-second rates, but combining them with computational algorithms has given rise to unprecedented new imaging capabilities. Computational time-resolved imaging has enabled new techniques for 3D imaging, light transport analysis, imaging around corners or behind occluders, and imaging through scattering media such as fog, murky water, or human tissue. With applications in autonomous navigation, robotic vision, human-computer interaction, and more, this is an area of rapidly growing interest. In this course, we provide an introduction to computational time-resolved imaging and single photon sensing with a focus on hardware, applications, and algorithms. We describe various types of emerging single-photon detectors, including single-photon avalanche diodes and avalanche photodiodes, which are among the most popular time-resolved detectors. Physically accurate models for these detectors are described, including modeling parameters and noise statistics used in most computational algorithms. From the application side, we discuss the use of ultrafast active illumination for 3D imaging and transient imaging, and we describe the state of the art in non-line-of-sight imaging, which requires modelling and inverting the propagation and scattering of light from a visible surface to a hidden object and back. We describe time-resolved computational algorithms used in each of these applications and offer insights on potential future directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静依云完成签到,获得积分10
1秒前
zhentg完成签到,获得积分0
1秒前
英俊的铭应助勤劳的鹤轩采纳,获得10
1秒前
2秒前
RayKream应助研友_LwlAgn采纳,获得10
4秒前
夏大雨完成签到,获得积分10
4秒前
ding应助天真无招采纳,获得10
5秒前
sciscisci发布了新的文献求助10
6秒前
Ganlou应助研友_LwlAgn采纳,获得10
7秒前
8秒前
Singularity应助cc采纳,获得10
10秒前
11秒前
11秒前
WYN发布了新的文献求助10
12秒前
12秒前
12秒前
今后应助JUZI采纳,获得10
14秒前
16秒前
16秒前
night发布了新的文献求助10
17秒前
yud完成签到 ,获得积分10
18秒前
Hello应助小杨采纳,获得10
20秒前
20秒前
Akasazi发布了新的文献求助10
23秒前
ke完成签到,获得积分10
24秒前
火火完成签到 ,获得积分10
25秒前
SciGPT应助cc采纳,获得10
25秒前
25秒前
w_w完成签到,获得积分10
27秒前
西里给西里的求助进行了留言
29秒前
卡卡卡卡卡卡完成签到 ,获得积分10
30秒前
Andy关注了科研通微信公众号
32秒前
丘比特应助YFW采纳,获得10
33秒前
赢赢赢赢完成签到 ,获得积分10
34秒前
体贴花卷完成签到,获得积分10
34秒前
Hello应助严惜采纳,获得20
34秒前
38秒前
ZhouTY完成签到,获得积分10
39秒前
体贴花卷发布了新的文献求助10
39秒前
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999