作者
Hejian Zhang,Jinseok Kim,Hoa Phan,Tun Seng Herng,Tullimilli Y. Gopalakrishna,Wangdong Zeng,Jun Ding,Dongho Kim,Jishan Wu
摘要
2,6-Naphthoquinodimethane (2,6-NQDM)- and 1,5-naphthoquinodimethane (1,5-NQDM)-bridged porphyrin dimers, 2,6-P2 and 1,5-P2, were synthesized as relatively stable compounds. Both exhibit open-shell singlet ground state according to variable-temperature (VT) NMR and magnetic measurements, as well as restricted active space spin-flip (RAS-SF) calculations. The 1,5-P2 isomer has a larger diradical character ([Formula: see text], based on the RAS-SF calculations) and smaller singlet-triplet energy gap ([Formula: see text] kcal/mol, based on SQUID measurements) compared to the 2,6-P2 isomer ([Formula: see text], [Formula: see text] kcal/mol). In addition, 2,6-P2 shows intense one-photon absorption (OPA) ([Formula: see text] nm, [Formula: see text] M[Formula: see text] cm[Formula: see text] and a large two-photon absorption (TPA) cross-section ([Formula: see text] GM at 1400 nm) in the near-infrared region, while 1,5-P2 with larger diradical character displays red-shifted but weaker OPA ([Formula: see text] nm, [Formula: see text] M[Formula: see text] cm[Formula: see text] and a smaller TPA cross-section ([Formula: see text] GM at 1600 nm). Both compounds show four reversible redox waves and 1,5-P2 has a smaller electrochemical energy gap (1.06 eV vs.1.16 eV for 2,6-P2). Therefore, the bridge structure has a significant impact on the diradical character, electronic properties, and magnetic behaviors of the obtained porphyrin-based diradicaloids.