Deep Learning Radiomics Based on Contrast-Enhanced Ultrasound Might Optimize Curative Treatments for Very-Early or Early-Stage Hepatocellular Carcinoma Patients

列线图 无线电技术 医学 射频消融术 肝细胞癌 放射科 超声造影 阶段(地层学) 内科学 超声波 肿瘤科 烧蚀 古生物学 生物
作者
Fei Liu,Dan Liu,Kun Wang,Xiaohua Xie,Liya Su,Ming Kuang,Guangliang Huang,Baogang Peng,Yuqi Wang,Manxia Lin,Jie Tian,Xiaoyan Xie
出处
期刊:Liver cancer [S. Karger AG]
卷期号:9 (4): 397-413 被引量:95
标识
DOI:10.1159/000505694
摘要

We aimed to evaluate the performance of a deep learning (DL)-based Radiomics strategy designed for analyzing contrast-enhanced ultrasound (CEUS) to not only predict the progression-free survival (PFS) of radiofrequency ablation (RFA) and surgical resection (SR) but also optimize the treatment selection between them for patients with very-early or early-stage hepatocellular carcinoma (HCC).We retrospectively enrolled 419 patients examined by CEUS within 1 week before receiving RFA or SR (RFA: 214, SR: 205) from January 2008 to 2016. Two Radiomics signatures were constructed by the Radiomics model R-RFA and R-SR to stratify PFS of different treatment groups. Then, RFA and SR nomograms were built by incorporating Radiomics signatures and significant clinical variables to achieve individualized 2-year PFS prediction. Finally, we applied both Radiomics models and both nomograms to each enrolled patient to investigate whether there were space for treatment optimization and how much prognostic improvement could be expected.R-RFA and R-SR showed remarkable discrimination (C-index: 0.726 for RFA, 0.741 for SR). RFA and SR nomograms provided good 2-year PFS prediction accuracy and good calibrations. We identified 17.3% RFA patients and 27.3% SR patients should swap their treatment, so their average probability of 2-year PFS would increase 12 and 15%, respectively.The proposed Radiomics models and nomograms achieved accurate preoperative prediction of PFS for RFA and SR, and they could facilitate the optimized treatment selection between them for patients with very-early or early-stage HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助WhiteT采纳,获得10
刚刚
sfxnxgu完成签到,获得积分20
2秒前
3秒前
深海鱼发布了新的文献求助10
4秒前
WOLF发布了新的文献求助30
6秒前
yuyuyuyuyuyuyu完成签到,获得积分10
8秒前
塵埃完成签到,获得积分10
10秒前
深情安青应助mm采纳,获得10
10秒前
nonosense完成签到,获得积分10
12秒前
假期完成签到,获得积分10
12秒前
不配.应助科研通管家采纳,获得10
13秒前
zhikaiyici应助科研通管家采纳,获得10
13秒前
不配.应助科研通管家采纳,获得50
13秒前
可乐应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
liangliang完成签到,获得积分20
15秒前
16秒前
不爱吃香菜完成签到,获得积分20
16秒前
zxt完成签到 ,获得积分10
18秒前
18秒前
mm完成签到,获得积分10
19秒前
fg发布了新的文献求助10
19秒前
愉快的楷瑞完成签到,获得积分10
20秒前
21秒前
纪富发布了新的文献求助10
22秒前
今后应助WOLF采纳,获得10
23秒前
fenmiao完成签到,获得积分10
24秒前
鸡鱼蚝发布了新的文献求助10
25秒前
nil完成签到,获得积分10
29秒前
YOLO完成签到,获得积分10
30秒前
clarklkq完成签到,获得积分10
33秒前
33秒前
鸡鱼蚝完成签到,获得积分10
33秒前
fg完成签到 ,获得积分10
34秒前
XUHYBOR应助AoAoo采纳,获得10
35秒前
35秒前
Orange应助YOLO采纳,获得10
35秒前
深情安青应助自然的含烟采纳,获得10
37秒前
酷炫迎波完成签到,获得积分10
39秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159813
求助须知:如何正确求助?哪些是违规求助? 2810709
关于积分的说明 7889177
捐赠科研通 2469823
什么是DOI,文献DOI怎么找? 1315112
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012