Deep Learning Radiomics Based on Contrast-Enhanced Ultrasound Might Optimize Curative Treatments for Very-Early or Early-Stage Hepatocellular Carcinoma Patients

列线图 无线电技术 医学 射频消融术 肝细胞癌 放射科 超声造影 阶段(地层学) 内科学 超声波 肿瘤科 烧蚀 古生物学 生物
作者
Fei Liu,Dan Liu,Kun Wang,Xiaohua Xie,Liya Su,Ming Kuang,Guangliang Huang,Baogang Peng,Yuqi Wang,Manxia Lin,Jie Tian,Xiaoyan Xie
出处
期刊:Liver cancer [S. Karger AG]
卷期号:9 (4): 397-413 被引量:95
标识
DOI:10.1159/000505694
摘要

We aimed to evaluate the performance of a deep learning (DL)-based Radiomics strategy designed for analyzing contrast-enhanced ultrasound (CEUS) to not only predict the progression-free survival (PFS) of radiofrequency ablation (RFA) and surgical resection (SR) but also optimize the treatment selection between them for patients with very-early or early-stage hepatocellular carcinoma (HCC).We retrospectively enrolled 419 patients examined by CEUS within 1 week before receiving RFA or SR (RFA: 214, SR: 205) from January 2008 to 2016. Two Radiomics signatures were constructed by the Radiomics model R-RFA and R-SR to stratify PFS of different treatment groups. Then, RFA and SR nomograms were built by incorporating Radiomics signatures and significant clinical variables to achieve individualized 2-year PFS prediction. Finally, we applied both Radiomics models and both nomograms to each enrolled patient to investigate whether there were space for treatment optimization and how much prognostic improvement could be expected.R-RFA and R-SR showed remarkable discrimination (C-index: 0.726 for RFA, 0.741 for SR). RFA and SR nomograms provided good 2-year PFS prediction accuracy and good calibrations. We identified 17.3% RFA patients and 27.3% SR patients should swap their treatment, so their average probability of 2-year PFS would increase 12 and 15%, respectively.The proposed Radiomics models and nomograms achieved accurate preoperative prediction of PFS for RFA and SR, and they could facilitate the optimized treatment selection between them for patients with very-early or early-stage HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研韭菜发布了新的文献求助10
1秒前
科研通AI5应助爱学习采纳,获得10
1秒前
科研通AI5应助跳跃的太阳采纳,获得10
1秒前
苏尔琳诺完成签到,获得积分10
1秒前
科研通AI5应助a1oft采纳,获得10
2秒前
2秒前
关关过完成签到,获得积分10
2秒前
呢不辣完成签到,获得积分10
2秒前
2秒前
shi hui应助陈博士采纳,获得10
2秒前
2秒前
糖糖关注了科研通微信公众号
3秒前
3秒前
小恶于完成签到 ,获得积分10
3秒前
科研通AI2S应助落晨采纳,获得10
4秒前
4秒前
5秒前
半颗橙子发布了新的文献求助10
5秒前
小可爱完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
Jiangnj发布了新的文献求助30
7秒前
samantha完成签到,获得积分10
8秒前
8秒前
俎树同完成签到 ,获得积分10
8秒前
Natsu完成签到,获得积分10
8秒前
马保国123发布了新的文献求助10
9秒前
丘比特应助无限的隶采纳,获得10
9秒前
在云里爱与歌完成签到,获得积分10
10秒前
迟大猫应助研究生采纳,获得10
10秒前
可行完成签到,获得积分10
10秒前
10秒前
yuhui完成签到,获得积分10
10秒前
11秒前
pi发布了新的文献求助10
11秒前
11秒前
小蘑菇应助科研菜鸟采纳,获得10
12秒前
Owen应助晚风采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762