How do users interact with algorithm recommender systems? The interaction of users, algorithms, and performance

计算机科学 推荐系统 算法 概念化 可用性 模棱两可 感知 情感(语言学) 感觉 认知 用户体验设计 过程(计算) 透明度(行为) 人机交互 人工智能 机器学习 心理学 社会心理学 神经科学 程序设计语言 操作系统 沟通 计算机安全
作者
Dong‐Hee Shin
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:109: 106344-106344 被引量:109
标识
DOI:10.1016/j.chb.2020.106344
摘要

Although algorithms have been widely used to deliver useful applications and services, it is unclear how users actually experience and interact with algorithm-driven services. This ambiguity is even more troubling in news recommendation algorithms, where thorny issues are complicated. This study investigates the user experience and usability of algorithms by focusing on users' cognitive process to understand how qualities/features are received and transformed into experiences and interaction. This work examines how users perceive and feel about issues in news recommendations and how they interact and engage with algorithm-recommended news. It proposes an algorithm experience model of news recommendation integrating the heuristic process of cognitive, affective, and behavioral factors. The underlying algorithm can affect in different ways the user's perception and trust of the system. The heuristic affect occurs when users' subjective feelings about transparency and accuracy act as a mental shortcut: users considered transparent and accurate systems convenient and useful. The mediating role of trust suggests that establishing algorithmic trust between users and NRS could enhance algorithm performance. The model illustrates the users' cognitive processes of perceptual judgment as well as the motivation behind user behaviors. The results highlight a link between news recommendation systems and user interaction, providing a clearer conceptualization of user-centered development and the evaluation of algorithm-based services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青山发布了新的文献求助10
1秒前
小杨杨完成签到,获得积分20
1秒前
辣比小欣发布了新的文献求助10
1秒前
Beebee24完成签到,获得积分10
1秒前
mnliao完成签到,获得积分10
2秒前
杨金光发布了新的文献求助30
3秒前
3秒前
3秒前
找不到文献的小江完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Survivor发布了新的文献求助30
6秒前
Qianbaor应助小狐狸采纳,获得10
6秒前
允怡发布了新的文献求助10
6秒前
科目三应助求助采纳,获得10
6秒前
6秒前
顾矜应助yjz采纳,获得10
6秒前
wangchao1880发布了新的文献求助10
7秒前
忍冬完成签到,获得积分10
7秒前
7秒前
友好靖巧发布了新的文献求助10
7秒前
xlk2222发布了新的文献求助10
8秒前
北阳发布了新的文献求助10
9秒前
9秒前
9秒前
yanzinie发布了新的文献求助10
9秒前
9秒前
9秒前
今后应助123采纳,获得10
9秒前
tusyuki发布了新的文献求助10
9秒前
10秒前
舒心的幻莲完成签到,获得积分10
10秒前
烂漫的猕猴桃完成签到,获得积分10
10秒前
忍冬发布了新的文献求助10
10秒前
SciGPT应助盛清让采纳,获得10
10秒前
10秒前
11秒前
赘婿应助ssss采纳,获得10
11秒前
直率安双完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543260
求助须知:如何正确求助?哪些是违规求助? 3120651
关于积分的说明 9343550
捐赠科研通 2818657
什么是DOI,文献DOI怎么找? 1549757
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713078