Toward the digital twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to detect process faults

人工智能 计算机科学 高温计 机器学习 背景(考古学) 传热 算法 温度测量 材料科学 物理 机械 古生物学 量子力学 生物
作者
Aniruddha Gaikwad,Reza Yavari,Mohammad Montazeri,Kevin D. Cole,Linkan Bian,Prahalada Rao
出处
期刊:IISE transactions [Taylor & Francis]
卷期号:52 (11): 1204-1217 被引量:130
标识
DOI:10.1080/24725854.2019.1701753
摘要

The goal of this work is to achieve the defect-free production of parts made using Additive Manufacturing (AM) processes. As a step towards this goal, the objective is to detect flaws in AM parts during the process by combining predictions from a physical model (simulation) with in-situ sensor signatures in a machine learning framework. We hypothesize that flaws in AM parts are detected with significantly higher statistical fidelity (F-score) when both in-situ sensor data and theoretical predictions are pooled together in a machine learning model, compared to an approach that is based exclusively on machine learning of sensor data (black-box model) or physics-based predictions (white-box model). We test the hypothesized efficacy of such a gray-box model or digital twin approach in the context of the laser powder bed fusion (LPBF) and directed energy deposition (DED) AM processes. For example, in the DED process, we first predicted the instantaneous spatiotemporal distribution of temperature in a thin-wall titanium alloy part using a computational heat transfer model based on graph theory. Subsequently, we combined the preceding physics-derived thermal trends with in-situ temperature measurements obtained from a pyrometer in a readily implemented supervised machine learning framework (support vector machine). We demonstrate that the integration of temperature predictions from an ab initio heat transfer model and in-situ sensor data is capable of detecting flaws in the DED-produced thin-wall part with F-score approaching 90%. By contrast, the F-score decreases to nearly 80% when either temperature measurements from the in-situ sensor or temperature distribution predictions from the theoretical model are used alone by themselves. This work thus demonstrates an early foray into the digital twin paradigm for real-time process monitoring in AM via seamless integration of physics-based modeling (simulation), in-situ sensing, and data analytics (machine learning).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Micale发布了新的文献求助10
2秒前
QQQ完成签到,获得积分10
2秒前
2秒前
4秒前
TTT发布了新的文献求助10
4秒前
4秒前
尊敬的飞槐完成签到,获得积分10
5秒前
zwy应助射天狼采纳,获得10
6秒前
DQ发布了新的文献求助10
8秒前
丘比特应助Diamond采纳,获得10
9秒前
10秒前
英俊的铭应助俏皮的树叶采纳,获得10
10秒前
科研通AI5应助蜡笔小z采纳,获得10
10秒前
牧长一完成签到 ,获得积分0
11秒前
11秒前
13秒前
天天快乐应助眼睛大如天采纳,获得10
13秒前
Micale完成签到,获得积分10
14秒前
14秒前
剑指东方是为谁应助TTT采纳,获得10
15秒前
16秒前
16秒前
赵赵赵发布了新的文献求助10
16秒前
17秒前
啊哈哈哈发布了新的文献求助10
20秒前
钦川发布了新的文献求助10
21秒前
ljl12138发布了新的文献求助10
22秒前
22秒前
科目三应助nini采纳,获得10
22秒前
24秒前
TTT完成签到,获得积分20
25秒前
26秒前
夕诙发布了新的文献求助30
28秒前
啊哈哈哈完成签到,获得积分10
29秒前
科研通AI5应助冷静的十八采纳,获得10
29秒前
29秒前
29秒前
科研通AI5应助还在做梦采纳,获得10
30秒前
hj发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772930
求助须知:如何正确求助?哪些是违规求助? 3318514
关于积分的说明 10190471
捐赠科研通 3033215
什么是DOI,文献DOI怎么找? 1664233
邀请新用户注册赠送积分活动 796133
科研通“疑难数据库(出版商)”最低求助积分说明 757259