Fault diagnosis of high-speed train suspension systems using multiscale permutation entropy and linear local tangent space alignment

转向架 悬挂(拓扑) 混蛋 切线 熵(时间箭头) 工程类 控制理论(社会学) 计算机科学 切线空间 加速度 算法 汽车工程 数学 结构工程 人工智能 纯数学 几何学 控制(管理) 数学分析 物理 经典力学 量子力学 同伦
作者
Yunguang Ye,Yongxiang Zhang,Qingbo Wang,Zhiwei Wang,Zhenjie Teng,Hougui Zhang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:138: 106565-106565 被引量:70
标识
DOI:10.1016/j.ymssp.2019.106565
摘要

Online health monitoring of railway vehicle suspension systems is of critical importance to guarantee train running safety. The currently reported works on vehicle suspension health monitoring mainly adopt model-based approaches. However, detailed parameters of the vehicle suspension systems, usually, are complicated to be acquired. Moreover, an accurate model cannot be easily obtained due to the nonlinearities of vehicle components and the complexity of suspension systems. Considering the limitations of the model-based approaches, a data-driven method, which combines multiscale permutation entropy and linear local tangent space alignment (MPE-LLTSA), is proposed to diagnose the faults of vehicle suspension systems. To demonstrate the effectiveness and advantages of this method, an MBS model of the China CRH3 train is built to generate the bogie frame’s lateral acceleration containing various secondary suspension faults, and the simulated signals are then introduced to evaluate the MPE-LLTSA method. The evaluation results show that the proposed data-driven approach can accurately identify different types of suspension faults. Finally, the MPE-LLTSA method is further validated using the tracking data of the CRH3 train running on a high-speed railway line in China, and the test results show that the proposed method has the potential to be applied to the field of railway engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
π.发布了新的文献求助10
刚刚
1秒前
yangyangyang发布了新的文献求助10
1秒前
siccy完成签到 ,获得积分10
1秒前
图南关注了科研通微信公众号
2秒前
我是老大应助Mrrr采纳,获得10
2秒前
ZTT发布了新的文献求助10
2秒前
调皮的凝旋完成签到,获得积分10
2秒前
JiangY完成签到,获得积分10
2秒前
妮妮爱smile完成签到,获得积分10
3秒前
咕噜仔发布了新的文献求助10
3秒前
4秒前
研友_VZG7GZ应助King16采纳,获得10
4秒前
lyn发布了新的文献求助10
4秒前
瑰夏完成签到,获得积分20
4秒前
喜洋洋发布了新的文献求助10
4秒前
ZL发布了新的文献求助10
4秒前
zhang发布了新的文献求助10
4秒前
4秒前
顺利的爆米花完成签到 ,获得积分10
5秒前
沉静秋尽完成签到,获得积分10
5秒前
大个应助沉静的颦采纳,获得10
5秒前
657完成签到 ,获得积分10
5秒前
5秒前
执念完成签到 ,获得积分10
6秒前
ECCE713完成签到,获得积分10
6秒前
小刺完成签到,获得积分10
6秒前
sweetbearm应助zxl采纳,获得10
6秒前
优秀的盼夏完成签到,获得积分10
7秒前
传奇3应助沉敛一生采纳,获得10
7秒前
科研通AI5应助咕噜仔采纳,获得50
7秒前
lm完成签到,获得积分20
7秒前
FFF发布了新的文献求助10
8秒前
小二郎应助哈哈采纳,获得10
8秒前
乐乐应助juan采纳,获得10
9秒前
txyouniverse完成签到 ,获得积分10
9秒前
CodeCraft应助纷花雨采纳,获得10
9秒前
小十二完成签到,获得积分10
9秒前
Tianxu Li发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759