材料科学                        
                
                                
                        
                            涂层                        
                
                                
                        
                            微观结构                        
                
                                
                        
                            合金                        
                
                                
                        
                            腐蚀                        
                
                                
                        
                            压痕硬度                        
                
                                
                        
                            冶金                        
                
                                
                        
                            复合材料                        
                
                                
                        
                            基质(水族馆)                        
                
                                
                        
                            海洋学                        
                
                                
                        
                            地质学                        
                
                        
                    
            作者
            
                Sheng Li,Laihua Yi,Liu Tong-fang,Bo Ji,C.C Yang,Lihong Zhou            
         
                    
        
    
            
            标识
            
                                    DOI:10.1002/maco.201911362
                                    
                                
                                 
         
        
                
            摘要
            
            Abstract Although Al produces a solid metallurgical bonding with Mg alloy substrates, micropores or crevices in the Al coating can reduce the resistance of Mg alloy to corrosion. In this study, a composite coating with a defect‐free microstructure was prepared on the AZ31 Mg alloy substrate by introducing Al 2 O 3 into the Al matrix via the method of laser cladding. On the one hand, Al 2 O 3 with thermal insulation had a low thermal expansion coefficient and was not very prone to voids during laser melting. On the other hand, Al 2 O 3 particles with a small size acted as the filler in the micropores or crevices. The Al/Al 2 O 3 coating exhibited a smaller current density (2.1 × 10 −6 A/cm 2 ) in comparison with those of bare substrate and Al coating (158.4 × 10 −6 and 3.1 × 10 −6 A/cm 2 , respectively), which was mainly ascribed to the pore‐free microstructure and high resistance to corrosion of Al 2 O 3 phase. A favorable microhardness value of 95.3 HV was achieved for Al/Al 2 O 3 coating, approximately 1.8 times higher than that of Al coating (52.8 V), which was mainly ascribed to the dispersion hardening of Al 2 O 3 phase. Meanwhile, the Al/Al 2 O 3 coating significantly reduced wear volume from 2.8 mm 3 /m of Al coating to 0.4 mm 3 /m, showing great potential for weight reduction applications.
         
            
 
                 
                
                    
                    科研通智能强力驱动
Strongly Powered by AbleSci AI