清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

GW-SEM 2.0: Efficient, Flexible, and Accessible Multivariate GWAS

全基因组关联研究 多元统计 多元分析 计算机科学 差异(会计) 背景(考古学) 统计 单核苷酸多态性 数据挖掘 数学 生物 机器学习 遗传学 基因 会计 基因型 业务 古生物学
作者
Joshua N. Pritikin,Michael C. Neale,Elizabeth Prom‐Wormley,Shaunna L. Clark,Brad Verhulst
出处
期刊:Behavior Genetics [Springer Nature]
卷期号:51 (3): 343-357 被引量:21
标识
DOI:10.1007/s10519-021-10043-1
摘要

Most genome-wide association study (GWAS) analyses test the association between single-nucleotide polymorphisms (SNPs) and a single trait or outcome. While valuable second-step analyses of these associations (e.g., calculating genetic correlations between traits) are common, single-step multivariate analyses of GWAS data are rarely performed. This is unfortunate because multivariate analyses can reveal information which is irrevocably obscured in multi-step analysis. One simple example is the distinction between variance common to a set of measures, and variance specific to each. Neither GWAS of sum- or factor-scores, nor GWAS of the individual measures will deliver a clean picture of loci associated with each measure's specific variance. While multivariate GWAS opens up a broad new landscape of feasible and informative analyses, its adoption has been slow, likely due to the heavy computational demands and difficulties specifying models it requires. Here we describe GW-SEM 2.0, which is designed to simplify model specification and overcome the inherent computational challenges associated with multivariate GWAS. In addition, GW-SEM 2.0 allows users to accurately model ordinal items, which are common in behavioral and psychological research, within a GWAS context. This new release enhances computational efficiency, allows users to select the fit function that is appropriate for their analyses, expands compatibility with standard genomic data formats, and outputs results for seamless reading into other standard post-GWAS processing software. To demonstrate GW-SEM's utility, we conducted (1) a series of GWAS using three substance use frequency items from data in the UK Biobank, (2) a timing study for several predefined GWAS functions, and (3) a Type I Error rate study. Our multivariate GWAS analyses emphasize the utility of GW-SEM for identifying novel patterns of associations that vary considerably between genomic loci for specific substances, highlighting the importance of differentiating between substance-specific use behaviors and polysubstance use. The timing studies demonstrate that the analyses take a reasonable amount of time and show the cost of including additional items. The Type I Error rate study demonstrates that hypothesis tests for genetic associations with latent variable models follow the hypothesized uniform distribution. Taken together, we suggest that GW-SEM may provide substantially deeper insights into the underlying genomic architecture for multivariate behavioral and psychological systems than is currently possible with standard GWAS methods. The current release of GW-SEM 2.0 is available on CRAN (stable release) and GitHub (beta release), and tutorials are available on our github wiki ( https://jpritikin.github.io/gwsem/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oaoalaa完成签到 ,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
11秒前
18秒前
科研通AI2S应助鬼见愁采纳,获得10
46秒前
gszy1975完成签到,获得积分10
50秒前
科研通AI2S应助鬼见愁采纳,获得10
56秒前
1分钟前
zhao123123完成签到 ,获得积分10
1分钟前
orange完成签到 ,获得积分10
1分钟前
蓝意完成签到,获得积分0
1分钟前
woxinyouyou完成签到,获得积分0
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
digger2023完成签到 ,获得积分10
2分钟前
爱学习的婷完成签到 ,获得积分10
2分钟前
dracovu完成签到,获得积分10
2分钟前
2分钟前
赧赧完成签到 ,获得积分10
2分钟前
bibo发布了新的文献求助10
2分钟前
李爱国应助bibo采纳,获得10
3分钟前
研友_08oa3n完成签到 ,获得积分10
3分钟前
3分钟前
Allot完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
酷炫书芹完成签到 ,获得积分10
4分钟前
juan完成签到 ,获得积分10
4分钟前
科研狗完成签到 ,获得积分10
4分钟前
Polymer72应助heisa采纳,获得30
4分钟前
Tong完成签到,获得积分0
5分钟前
GGBond完成签到 ,获得积分10
5分钟前
无辜的行云完成签到 ,获得积分0
5分钟前
龙飞凤舞完成签到,获得积分10
5分钟前
5分钟前
John完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
李健应助科研通管家采纳,获得10
6分钟前
未完成完成签到,获得积分10
6分钟前
小巧小海豚完成签到 ,获得积分10
6分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393109
求助须知:如何正确求助?哪些是违规求助? 3003420
关于积分的说明 8809223
捐赠科研通 2690228
什么是DOI,文献DOI怎么找? 1473579
科研通“疑难数据库(出版商)”最低求助积分说明 681603
邀请新用户注册赠送积分活动 674550