Radiomics Nomogram for Predicting Locoregional Failure in Locally Advanced Non-small Cell Lung Cancer Treated with Definitive Chemoradiotherapy

列线图 医学 无线电技术 置信区间 比例危险模型 肺癌 逻辑回归 肿瘤科 队列 放射科 放化疗 内科学 放射治疗
作者
X. Chen,Xin Tong,Qingtao Qiu,Xuejun Sun
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:108 (3): S172-S172
标识
DOI:10.1016/j.ijrobp.2020.07.949
摘要

To develop and validate a radiomics nomogram for predicting locoregional failure (LRF) in patients with locally advanced non-small cell lung cancer (NSCLC) treated with definitive chemoradiotherapy (CRT). 141 patients with locally advanced NSCLC treated with definitive CRT from Jan 2014 to Dec 2017 were included and divided into testing cohort (n = 100) and validation (n = 41) cohort. Radiomic features were extracted from portal venous-phase computed tomography (CT) before treatments using 3D Slicer. The least absolute shrinkage and selection operator (LASSO) logistic regression was processed to select predictive features from the testing cohort and constructed a radiomics signature. Clinical data and the radiomics signature were analyzed using univariable and multivariate Cox regression. The radiomics nomogram was established with the radiomics signature and independent clinical factors. Harrell's C-index, calibration curves and decision curves were used to assess the performance of the radiomics nomogram. The radiomics signature, which consisted of 8 selected features, was an independent factor of LRF. And the clinical predictor of LRF was the histologic type. The radiomics nomogram combined with the radiomics signature and the histologic type showed good performance with C-indexes of 0.828 (95% confidence interval [CI]:0.748-0.908) and 0.765 (95% CI:0.668-0.862) in the testing and validation cohorts respectively. The combined radiomics nomogram resulted in better performance (p<0.001) for the estimation of LRF than the nomograms with the radiomics signature (C-index: 0.776; 95%CI: 0.686-0.866) or the histologic type (C-index: 0.631; 95%CI: 0.536-0.726) alone. Decision curve analysis demonstrated the clinical usefulness of the radiomics nomogram. The radiomics signature is an independent predictor of LRF in patients with locally advanced NSCLC. The radiomics nomogram incorporated the radiomics signature and the histologic type showed good prognostic value of LRF and might be helpful for individual treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助拌拌采纳,获得10
刚刚
Ding应助维时采纳,获得10
刚刚
千空发布了新的文献求助10
1秒前
怕孤单的若颜完成签到,获得积分10
1秒前
1秒前
2秒前
15297657686完成签到,获得积分10
2秒前
Max完成签到,获得积分10
3秒前
SherlockJia完成签到,获得积分10
3秒前
callmecjh完成签到,获得积分10
4秒前
5123完成签到,获得积分10
4秒前
阿良完成签到,获得积分10
4秒前
伍六七完成签到,获得积分10
5秒前
YOYOYO完成签到,获得积分10
5秒前
5秒前
彳亍完成签到,获得积分10
5秒前
MRIFFF完成签到,获得积分10
5秒前
Linda完成签到 ,获得积分10
6秒前
孙燕应助赵宇宙采纳,获得10
6秒前
小圆子完成签到,获得积分10
6秒前
6秒前
富强民主发布了新的文献求助20
6秒前
7秒前
burno1112完成签到,获得积分10
8秒前
121完成签到,获得积分10
8秒前
忧郁小蘑菇完成签到,获得积分10
8秒前
今何在完成签到,获得积分10
8秒前
TTT完成签到,获得积分10
9秒前
CC完成签到 ,获得积分10
9秒前
ZJZALLEN完成签到 ,获得积分10
9秒前
丁昆发布了新的文献求助10
9秒前
小马甲应助冷傲迎梦采纳,获得10
9秒前
9秒前
9秒前
li完成签到,获得积分10
9秒前
小杜完成签到 ,获得积分10
10秒前
hitlzz发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044