Radiomics Nomogram for Predicting Locoregional Failure in Locally Advanced Non-small Cell Lung Cancer Treated with Definitive Chemoradiotherapy

列线图 医学 无线电技术 置信区间 比例危险模型 肺癌 逻辑回归 肿瘤科 队列 放射科 放化疗 内科学 放射治疗
作者
X. Chen,Xin Tong,Qingtao Qiu,Xuejun Sun
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:108 (3): S172-S172
标识
DOI:10.1016/j.ijrobp.2020.07.949
摘要

To develop and validate a radiomics nomogram for predicting locoregional failure (LRF) in patients with locally advanced non-small cell lung cancer (NSCLC) treated with definitive chemoradiotherapy (CRT). 141 patients with locally advanced NSCLC treated with definitive CRT from Jan 2014 to Dec 2017 were included and divided into testing cohort (n = 100) and validation (n = 41) cohort. Radiomic features were extracted from portal venous-phase computed tomography (CT) before treatments using 3D Slicer. The least absolute shrinkage and selection operator (LASSO) logistic regression was processed to select predictive features from the testing cohort and constructed a radiomics signature. Clinical data and the radiomics signature were analyzed using univariable and multivariate Cox regression. The radiomics nomogram was established with the radiomics signature and independent clinical factors. Harrell's C-index, calibration curves and decision curves were used to assess the performance of the radiomics nomogram. The radiomics signature, which consisted of 8 selected features, was an independent factor of LRF. And the clinical predictor of LRF was the histologic type. The radiomics nomogram combined with the radiomics signature and the histologic type showed good performance with C-indexes of 0.828 (95% confidence interval [CI]:0.748-0.908) and 0.765 (95% CI:0.668-0.862) in the testing and validation cohorts respectively. The combined radiomics nomogram resulted in better performance (p<0.001) for the estimation of LRF than the nomograms with the radiomics signature (C-index: 0.776; 95%CI: 0.686-0.866) or the histologic type (C-index: 0.631; 95%CI: 0.536-0.726) alone. Decision curve analysis demonstrated the clinical usefulness of the radiomics nomogram. The radiomics signature is an independent predictor of LRF in patients with locally advanced NSCLC. The radiomics nomogram incorporated the radiomics signature and the histologic type showed good prognostic value of LRF and might be helpful for individual treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘天宇完成签到 ,获得积分10
刚刚
WZ发布了新的文献求助10
1秒前
匹诺曹完成签到,获得积分10
2秒前
听说完成签到,获得积分10
2秒前
2秒前
UU完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
侃侃完成签到,获得积分10
6秒前
6秒前
RoadWatcher发布了新的文献求助30
6秒前
9秒前
所所应助细心寒凡采纳,获得10
9秒前
10秒前
生姜发布了新的文献求助10
10秒前
11秒前
听说发布了新的文献求助10
12秒前
12秒前
夜泊发布了新的文献求助10
13秒前
lee完成签到,获得积分10
13秒前
看不见的美完成签到,获得积分10
14秒前
14秒前
15秒前
田様应助木子采纳,获得10
15秒前
fendy完成签到,获得积分0
16秒前
jstagey关注了科研通微信公众号
16秒前
16秒前
细心映寒完成签到 ,获得积分10
17秒前
17秒前
汉堡包应助艺阳采纳,获得10
17秒前
温暖眼神完成签到,获得积分10
18秒前
18秒前
18秒前
tangz发布了新的文献求助10
19秒前
朴素若枫完成签到,获得积分10
19秒前
高兴水壶完成签到 ,获得积分10
19秒前
66完成签到,获得积分10
19秒前
俊逸的问薇完成签到 ,获得积分10
20秒前
21秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328053
求助须知:如何正确求助?哪些是违规求助? 2958192
关于积分的说明 8589449
捐赠科研通 2636443
什么是DOI,文献DOI怎么找? 1442995
科研通“疑难数据库(出版商)”最低求助积分说明 668470
邀请新用户注册赠送积分活动 655696