Cross-modality Person re-identification with Shared-Specific Feature Transfer

模态(人机交互) 特征(语言学) 计算机科学 人工智能 水准点(测量) 模式 鉴定(生物学) 特征学习 判别式 最佳显著性理论 特征向量 光学(聚焦) 机器学习 学习迁移 组分(热力学) 模式识别(心理学) 心理学 社会科学 哲学 语言学 植物 物理 大地测量学 社会学 光学 心理治疗师 生物 地理 热力学
作者
Yan Lu,Yue Wu,Bin Liu,Tianzhu Zhang,Baopu Li,Qi Chu,Nenghai Yu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2002.12489
摘要

Cross-modality person re-identification (cm-ReID) is a challenging but key technology for intelligent video analysis. Existing works mainly focus on learning common representation by embedding different modalities into a same feature space. However, only learning the common characteristics means great information loss, lowering the upper bound of feature distinctiveness. In this paper, we tackle the above limitation by proposing a novel cross-modality shared-specific feature transfer algorithm (termed cm-SSFT) to explore the potential of both the modality-shared information and the modality-specific characteristics to boost the re-identification performance. We model the affinities of different modality samples according to the shared features and then transfer both shared and specific features among and across modalities. We also propose a complementary feature learning strategy including modality adaption, project adversarial learning and reconstruction enhancement to learn discriminative and complementary shared and specific features of each modality, respectively. The entire cm-SSFT algorithm can be trained in an end-to-end manner. We conducted comprehensive experiments to validate the superiority of the overall algorithm and the effectiveness of each component. The proposed algorithm significantly outperforms state-of-the-arts by 22.5% and 19.3% mAP on the two mainstream benchmark datasets SYSU-MM01 and RegDB, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小鱼完成签到 ,获得积分10
刚刚
刚刚
甜美砖家完成签到 ,获得积分10
2秒前
superspace完成签到,获得积分10
3秒前
nn发布了新的文献求助10
5秒前
求助完成签到,获得积分10
6秒前
7秒前
翁雁丝完成签到 ,获得积分10
14秒前
郭义敏完成签到,获得积分0
14秒前
gyf完成签到,获得积分10
17秒前
李保龙完成签到 ,获得积分10
18秒前
22秒前
LJJ完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
26秒前
阿姨洗铁路完成签到 ,获得积分10
31秒前
抹不掉的记忆完成签到,获得积分10
33秒前
33秒前
余杭村王小虎完成签到,获得积分10
34秒前
韭黄完成签到,获得积分20
38秒前
jeffrey完成签到,获得积分10
38秒前
Rondab应助机灵枕头采纳,获得10
44秒前
佳无夜完成签到,获得积分10
49秒前
摆哥完成签到,获得积分10
53秒前
66完成签到,获得积分10
58秒前
zlqq完成签到 ,获得积分10
58秒前
Hardskills发布了新的文献求助10
1分钟前
1分钟前
之_ZH完成签到 ,获得积分10
1分钟前
gds2021完成签到 ,获得积分10
1分钟前
你好呀嘻嘻完成签到 ,获得积分10
1分钟前
梅特卡夫完成签到,获得积分10
1分钟前
熊雅完成签到,获得积分10
1分钟前
1分钟前
睡到自然醒完成签到 ,获得积分10
1分钟前
cis2014完成签到,获得积分10
1分钟前
独特的大有完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
xingyi完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022