Cross-modality Person re-identification with Shared-Specific Feature Transfer

模态(人机交互) 特征(语言学) 计算机科学 人工智能 水准点(测量) 模式 鉴定(生物学) 特征学习 判别式 最佳显著性理论 特征向量 光学(聚焦) 机器学习 学习迁移 组分(热力学) 模式识别(心理学) 心理学 社会科学 哲学 语言学 植物 物理 大地测量学 社会学 光学 心理治疗师 生物 地理 热力学
作者
Yan Lu,Yue Wu,Bin Liu,Tianzhu Zhang,Baopu Li,Qi Chu,Nenghai Yu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2002.12489
摘要

Cross-modality person re-identification (cm-ReID) is a challenging but key technology for intelligent video analysis. Existing works mainly focus on learning common representation by embedding different modalities into a same feature space. However, only learning the common characteristics means great information loss, lowering the upper bound of feature distinctiveness. In this paper, we tackle the above limitation by proposing a novel cross-modality shared-specific feature transfer algorithm (termed cm-SSFT) to explore the potential of both the modality-shared information and the modality-specific characteristics to boost the re-identification performance. We model the affinities of different modality samples according to the shared features and then transfer both shared and specific features among and across modalities. We also propose a complementary feature learning strategy including modality adaption, project adversarial learning and reconstruction enhancement to learn discriminative and complementary shared and specific features of each modality, respectively. The entire cm-SSFT algorithm can be trained in an end-to-end manner. We conducted comprehensive experiments to validate the superiority of the overall algorithm and the effectiveness of each component. The proposed algorithm significantly outperforms state-of-the-arts by 22.5% and 19.3% mAP on the two mainstream benchmark datasets SYSU-MM01 and RegDB, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
3秒前
Xiaoyang完成签到,获得积分10
3秒前
loski发布了新的文献求助10
3秒前
4秒前
虚心月饼发布了新的文献求助10
5秒前
6秒前
Lucas应助123采纳,获得10
8秒前
香蕉觅云应助KIORking采纳,获得10
9秒前
9秒前
Liufgui应助执着又蓝采纳,获得20
10秒前
10秒前
正直水池完成签到 ,获得积分10
10秒前
10秒前
阿克完成签到,获得积分10
10秒前
一方通行发布了新的文献求助10
11秒前
perovskite完成签到,获得积分10
11秒前
如梦如幻91完成签到,获得积分10
11秒前
11秒前
11秒前
妮露的修狗完成签到,获得积分10
12秒前
13秒前
14秒前
文献发布了新的文献求助30
16秒前
无花果应助我不吃胡萝卜采纳,获得10
17秒前
17秒前
18秒前
自信的电灯胆完成签到,获得积分20
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
21秒前
清辉夜凝发布了新的文献求助10
21秒前
23秒前
少敏敏发布了新的文献求助10
24秒前
25秒前
嘻哈发布了新的文献求助10
27秒前
苏y发布了新的文献求助10
27秒前
凶狠的乐巧完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173