硝化作用
矿化(土壤科学)
氮气循环
环境化学
温带森林
氮气
化学
尿素
土壤水分
土壤有机质
农学
温带气候
有机质
生态学
生物
生物化学
有机化学
作者
Mingzhu Lu,Shulan Cheng,Huajun Fang,Meng Xu,Yan Yang,Yuna Li,Jinbo Zhang,Christoph Müller
出处
期刊:Geoderma
[Elsevier BV]
日期:2020-12-23
卷期号:385: 114886-114886
被引量:25
标识
DOI:10.1016/j.geoderma.2020.114886
摘要
External inorganic and organic nitrogen (N) inputs can contrastingly affect the transformation and availability of N in forest soils. Studies have mainly focused on the effects of inorganic N enrichment, whereas little is known about the effects of organic N input on soil gross N transformation and the underlying microbial mechanisms. Here we conducted a laboratory 15N tracing study in a temperate needle-broadleaved mixed forest with a fertilization rate of 0, 20, 60, and 120 kg urea-N ha−1 yr−1 over three years. We investigated the key drivers of soil N transformation processes using a 15N tracing model in the context of selected soil chemical properties and microbial characteristics. Urea addition did not change soil gross N mineralization rates, while stimulating mineralization of labile organic N (MNlab). Urea addition at a rate of 120 kg N ha−1 yr−1 significantly increased autotrophic nitrification and gross nitrification rates by 88% and 96%, respectively. In contrast, all the three levels of urea addition significantly reduced gross microbial N immobilization by 28% to 52%, leading to an increase in the accumulation of soil NO3−-N in the top 10 cm soil layer by 38% to 88%. The changes in autotrophic nitrification were primarily driven by acid-tolerant ammonia-oxidizing archaea (AOA). Fungi were responsible for the change in heterotrophic nitrification under organic N enrichment. Gross N transformation rates were predominately regulated by AOA and fungal abundances as well as soil NO3−-N content under high level of organic N addition. The response of soil N transformation to exogenous organic N input depended on N addition level with the threshold rate being estimated to be 60–120 kg N ha−1 yr−1. All lines of evidence showed that the temperate needle-broadleaved mixed forest is moving towards an opener microbial N cycle under elevated organic N deposition. Our finding suggests that the effect of organic N input on soil gross N transformation is different from that of inorganic N input, which should be considered in ecosystem process models.
科研通智能强力驱动
Strongly Powered by AbleSci AI