(Invited) Electrosynthesis of Ammonia from Dinitrogen in Non-Aqueous Media

电合成 水介质 水溶液 氨生产 化学 无机化学 电化学 有机化学 物理化学 电极
作者
Pavel V. Cherepanov,Melinda Krebsz,Rebecca Y. Hodgetts,Hoang-Long Du,Bryan H. R. Suryanto,Luis Miguel Azofra,Douglas R. MacFarlane,Alexandr N. Simonov
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (36): 1457-1457
标识
DOI:10.1149/ma2020-01361457mtgabs
摘要

Since early 2018, the nitrogen reduction reaction to ammonia (NRR) has become a focus of active research as an approach to sustainable production of ammonia to support and eventually replace the century-old yet highly robust Haber-Bosch catalytic technology. More than one hundred reports on the successful NRR in aqueous electrolyte solutions catalysed by a comparatively wide range of materials have been published by the end of 2019, though the reported ammonia yield rates (<100 pmol s -1 cm -2 , per geometric surface area of the electrode) and faradaic efficiencies (< 20%) are typically low. In fact, the observed amounts of NH 3 produced in aqueous media are most often comparable to the level of adventitious nitrogen-based contaminants, thereby questioning the genuine nature of the reported NRR. The problems of the aqueous NRR, in the first place low faradaic efficiency, can be effectively addressed by employing aprotic electrolyte media for the electrochemical reduction of dinitrogen. 1-2 Under such conditions, the prevalence of the NRR over the competing and undesirable in this context hydrogen evolution reaction is suppressed due to the significantly higher solubility of N 2 than in water and controlled supply of the proton source. Ammonia electrosynthesis in organic media can be realised in at least two ways — either via direct electrocatalytic reaction, 3-4 or through a lithium-mediated process. 5-6 Both approaches have their pros and cons, and both are currently investigated in our groups. The talk will focus on some of the experimental challenges and pitfalls relevant to the non-aqueous NRR and on our recent progress in this area. References 1. Suryanto, B. H. R.; Du, H.-L.; Wang, D.; Chen, J.; Simonov, A. N.; MacFarlane, D. R., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nature Catal. 2019, 2 (4), 290-296. 2. Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A.; Statt, M. J.; Blair, S. J.; Mezzavilla, S.; Kibsgaard, J.; Vesborg, P. C. K.; Cargnello, M.; Bent, S. F.; Jaramillo, T. F.; Stephens, I. E. L.; Nørskov, J. K.; Chorkendorff, I., A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570 (7762), 504-508. 3. Zhou, F.; Azofra, L. M.; Ali, M.; Kar, M.; Simonov, A. N.; McDonnell-Worth, C.; Sun, C.; Zhang, X.; MacFarlane, D. R., Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 2017, 10 (12), 2516-2520. 4. Suryanto, B. H. R.; Kang, C. S. M.; Wang, D.; Xiao, C.; Zhou, F.; Azofra, L. M.; Cavallo, L.; Zhang, X.; MacFarlane, D. R., Rational Electrode–Electrolyte Design for Efficient Ammonia Electrosynthesis under Ambient Conditions. ACS Energy Lett. 2018, 3 (6), 1219-1224. 5. Tsuneto, A.; Kudo, A.; Sakata, T., Lithium-mediated electrochemical reduction of high pressure N 2 to NH 3 . J. Electroanal. Chem. 1994, 367 (1–2), 183-188. 6. McEnaney, J. M.; Singh, A. R.; Schwalbe, J. A.; Kibsgaard, J.; Lin, J. C.; Cargnello, M.; Jaramillo, T. F.; Nørskov, J. K., Ammonia synthesis from N 2 and H 2 O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 2017, 10 (7), 1621-1630.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
eden完成签到,获得积分10
刚刚
恒河鲤完成签到,获得积分10
2秒前
lililili发布了新的文献求助10
3秒前
3秒前
白子双发布了新的文献求助10
3秒前
林夕发布了新的文献求助10
4秒前
Singularity应助xzl采纳,获得20
5秒前
酷炫非常完成签到 ,获得积分10
6秒前
zzzz完成签到,获得积分10
8秒前
鬲木发布了新的文献求助10
8秒前
左手青春发布了新的文献求助10
9秒前
lililili完成签到,获得积分10
10秒前
zoe完成签到,获得积分10
11秒前
ding应助鬲木采纳,获得10
11秒前
酷炫非常发布了新的文献求助10
12秒前
学习发布了新的文献求助10
12秒前
kexiya完成签到 ,获得积分10
13秒前
14秒前
15秒前
16秒前
16秒前
孝铮发布了新的文献求助10
18秒前
19秒前
fshadow完成签到,获得积分10
19秒前
星辰大海应助浪漫得要死采纳,获得10
19秒前
liyang999发布了新的文献求助10
20秒前
22秒前
24秒前
ljcznhy发布了新的文献求助10
24秒前
今后应助孝铮采纳,获得10
26秒前
sober完成签到 ,获得积分10
26秒前
27秒前
28秒前
啦啦啦发布了新的文献求助10
28秒前
zyw关闭了zyw文献求助
33秒前
35秒前
科研通AI2S应助future采纳,获得10
35秒前
11发布了新的文献求助10
36秒前
littletown完成签到,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136781
求助须知:如何正确求助?哪些是违规求助? 2787825
关于积分的说明 7783217
捐赠科研通 2443872
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954