Application of drug-target prediction technology in network pharmacology of traditional Chinese medicine

中医药 计算机科学 药品 药物靶点 医学 系统药理学 机制(生物学) 药理学 药物发现 人工智能 机器学习 风险分析(工程) 数据科学 生物信息学 生物 替代医学 病理 哲学 认识论
作者
Chunwei Wu,Lu Li,Shengwang Liang,Chao Chen,Shumei Wang
出处
期刊:China journal of Chinese materia medica [China Journal of Chinese Materia Medica]
被引量:35
标识
DOI:10.4268/cjcmm20160303
摘要

In recent years, network pharmacology has been developed rapidly, and especially, the concept of ″network target″ has brought a new era in the field of traditional Chinese medicine (TCM). The integrity and systematicness emphasized in network pharmacology comply with the characteristics of holistic view and treatment in Chinese medicine. It can provide deeper insights into the underlying mechanisms of TCM theories, including the illustration on action mechanism of Chinese medicine, selection of pharmacodynamic materials and the combination principles of various Chinese herbs, etc. Therefore, this theory is more suitable for TCM academic characteristics and practical conditions. The key problem in network pharmacology is how to efficiently and quickly identify the interactions between large amounts of drugs and target proteins. As an efficient and high throughput way, drug-target prediction technology can reduce costs, quickly predict the component targets, and provide foundation for the application of TCM network pharmacology. In view of the large amount of compounds and target databases, different prediction methods and technologies have been developed, and used to predict the drug-target interactions. Many virtual screening technologies have been successfully applied to network pharmacology. Based on different prediction principles, drug-target prediction technology can be generally divided into four types: ligand-based prediction, receptor-based prediction, machine learning and combined prediction. In this paper, we are going to review the prediction methods of drug-target interactions and give acomprehensive elaboration of their application in network pharmacology of TCM, hoping to provide beneficial references for various Chinese medicine researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助phonon采纳,获得10
刚刚
xuruolan完成签到,获得积分20
1秒前
星辰大海应助娇羞的猛男采纳,获得10
1秒前
1秒前
杨气罐完成签到,获得积分20
3秒前
爆米花应助acihk采纳,获得10
3秒前
4秒前
4秒前
xinjiasuki完成签到,获得积分10
5秒前
6秒前
sutychen完成签到,获得积分20
7秒前
7秒前
8秒前
xinjiasuki发布了新的文献求助10
8秒前
9秒前
wbhou发布了新的文献求助10
9秒前
luqong完成签到,获得积分10
10秒前
哇咔咔发布了新的文献求助10
10秒前
12秒前
sutychen发布了新的文献求助10
13秒前
尧九完成签到 ,获得积分10
15秒前
Akim应助爱听歌笑寒采纳,获得10
16秒前
17秒前
18秒前
科目三应助敏er好学采纳,获得10
19秒前
19秒前
冰与火发布了新的文献求助10
21秒前
21秒前
默默的白梅完成签到,获得积分10
21秒前
大模型应助之星君采纳,获得10
22秒前
兴奋不弱发布了新的文献求助10
22秒前
23秒前
JamesPei应助聪慧的斑马采纳,获得30
23秒前
科研通AI2S应助幽默的豆芽采纳,获得10
24秒前
瘦瘦的铅笔完成签到 ,获得积分10
25秒前
爆米花应助sutychen采纳,获得10
26秒前
27秒前
28秒前
29秒前
还寻思啥呢完成签到,获得积分20
29秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291