已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rapid Geographical Origin Identification and Quality Assessment of Angelicae Sinensis Radix by FT-NIR Spectroscopy

阿魏酸 偏最小二乘回归 近红外光谱 校准 数学 根(腹足类) 当归 模式识别(心理学) 生物系统 人工智能 分析化学(期刊) 化学 色谱法 统计 计算机科学 物理 植物 生物 量子力学 医学 替代医学 中医药 病理
作者
Zhen‐Yu Zhang,Yingjun Wang,Hui Yan,Xiangwei Chang,Guisheng Zhou,Lei Zhu,Pei Liu,Sheng Guo,Tina Ting-Xia Dong,Jin‐Ao Duan
出处
期刊:Journal of analytical methods in chemistry [Hindawi Limited]
卷期号:2021: 1-12 被引量:20
标识
DOI:10.1155/2021/8875876
摘要

Angelicae Sinensis Radix is a widely used traditional Chinese medicine and spice in China. The purpose of this study was to develop a methodology for geographical classification of Angelicae Sinensis Radix and determine the contents of ferulic acid and Z-ligustilide in the samples using near-infrared spectroscopy. A qualitative model was established to identify the geographical origin of Angelicae Sinensis Radix using Fourier transform near-infrared (FT-NIR) spectroscopy. Support vector machine (SVM) algorithms were used for the establishment of a qualitative model. The optimum SVM model had a recognition rate of 100% for the calibration set and 83.72% for the prediction set. In addition, a quantitative model was established to predict the content of ferulic acid and Z-ligustilide using FT-NIR. Partial least squares regression (PLSR) algorithms were used for the establishment of a quantitative model. Synergy interval-PLS (Si-PLS) was used to screen the characteristic spectral interval to obtain the best PLSR model. The coefficient of determination for calibration (R2C) for the best PLSR models established with the optimal spectral preprocessing method and selected important spectral regions for the quantitative determination of ferulic acid and Z-ligustilide was 0.9659 and 0.9611, respectively, while the coefficient of determination for prediction (R2P) was 0.9118 and 0.9206, respectively. The values of the ratio of prediction to deviation (RPD) of the two final optimized PLSR models were greater than 2. The results suggested that NIR spectroscopy combined with SVM and PLSR algorithms could be exploited in the discrimination of Angelicae Sinensis Radix from different geographical locations for quality assurance and monitoring. This study might serve as a reference for quality evaluation of agricultural, pharmaceutical, and food products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
leilei发布了新的文献求助10
2秒前
2秒前
田様应助kk采纳,获得10
3秒前
叁肆完成签到,获得积分10
4秒前
咕咕咕发布了新的文献求助10
5秒前
5秒前
Yuan发布了新的文献求助10
5秒前
ding应助黄磊采纳,获得10
6秒前
过噻完成签到,获得积分10
8秒前
9秒前
库洛洛发布了新的文献求助10
9秒前
leilei完成签到,获得积分10
9秒前
jyy应助qiao采纳,获得10
9秒前
10秒前
10秒前
10秒前
斯皮克完成签到,获得积分10
11秒前
呜呼发布了新的文献求助10
12秒前
12秒前
诺诺完成签到 ,获得积分10
12秒前
13秒前
Boook完成签到,获得积分10
13秒前
唐军发布了新的文献求助10
13秒前
蓝桉发布了新的文献求助10
14秒前
14秒前
chase发布了新的文献求助10
16秒前
库洛洛完成签到,获得积分10
17秒前
SciGPT应助活力的邪欢采纳,获得10
19秒前
迷你的从蕾完成签到,获得积分10
19秒前
19秒前
19秒前
彭于晏应助Summer采纳,获得10
20秒前
酷波er应助佳远采纳,获得10
20秒前
21秒前
Leo完成签到 ,获得积分10
21秒前
haloo发布了新的文献求助10
22秒前
彭于晏应助唐军采纳,获得10
23秒前
禁止通行发布了新的文献求助10
23秒前
所所应助蓝桉采纳,获得10
24秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471228
求助须知:如何正确求助?哪些是违规求助? 3064103
关于积分的说明 9087449
捐赠科研通 2754912
什么是DOI,文献DOI怎么找? 1511625
邀请新用户注册赠送积分活动 698541
科研通“疑难数据库(出版商)”最低求助积分说明 698404