Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart disease

医学 营养不良 浪费的 体重不足 队列 接收机工作特性 儿科 列线图 前瞻性队列研究 队列研究 外科 体质指数 内科学 超重
作者
Hui Shi,Dong Yang,Kaichen Tang,Chunmei Hu,Lijuan Li,Linfang Zhang,Ting Gong,Yanqin Cui
出处
期刊:Clinical Nutrition [Elsevier]
卷期号:41 (1): 202-210 被引量:56
标识
DOI:10.1016/j.clnu.2021.11.006
摘要

Malnutrition is persistent in 50%-75% of children with congenital heart disease (CHD) after surgery, and early prediction is crucial for nutritional intervention. The aim of this study was to develop and validate machine learning (ML) models to predict the malnutrition status of children with CHD. We used explainable ML methods to provide insight into the model's predictions and outcomes.This prospective cohort study included consecutive children with CHD admitted to the hospital from December 2017 to May 2020. The cohort data were divided into the training and test data sets based on the follow-up time. The outcome of the study was CHD child malnutrition 1 year after surgery, the primary outcome was an underweight status, and the secondary outcomes were stunted and wasting status. We used five ML algorithms with multiple features to construct prediction models, and the performance of these ML models was measured by an area under the receiver operating characteristic curve (AUC) analysis. We also used the permutation importance and SHapley Additive exPlanations (SHAP) to determine the importance of the selected features and interpret the ML models.We enrolled 536 children with CHD who underwent complete repair. The proportions of children with an underweight, stunted, or wasting status 1 year after surgery were 18.1% (97/536), 12.1% (65/536), and 17.5% (94/536), respectively. All patients contributed to the generation of 115 useable features, which allowed us to build models to predict malnutrition. Five prediction algorithms were used, and the XGBoost model achieved the greatest AUC in all outcomes. The results obtained from the permutation importance and SHAP analyses showed that the 1-month postoperative WAZ-score, discharge WAZ score and preoperative WAZ score were the top 3 important features in predicting an underweight status in the XGBoost algorithm. Regarding the stunted status, the top 3 important features were the 1-month postoperative HAZ score, discharge HAZ score, and aortic clamping time. Regarding the wasting status, the top 3 important features were the hospital length of stay, formula intake, and discharge WHZ-score. We also used a narrative case report as an example to describe the clinical manifestations and predicted the primary outcomes of two children.We developed an ML model (XGBoost) that provides accurate early predictions of malnutrition 1-year postoperatively in children with CHD. Because the ML model is explainable, it may better enable clinicians to better understand the reasoning underlying the outcome. Our study could aid in determining individual treatment and nutritional follow-up strategies for children with CHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
热情的水杯完成签到,获得积分10
2秒前
cqcc完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
洗衣液完成签到,获得积分10
4秒前
zyy发布了新的文献求助10
5秒前
苏兜兜完成签到,获得积分10
6秒前
7秒前
吴未完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
小刘不笨发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
BBOOOOOO发布了新的文献求助10
9秒前
Vary发布了新的文献求助10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
安生发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
微糖应助科研通管家采纳,获得10
9秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
10秒前
微糖应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
Ky_Mac应助科研通管家采纳,获得50
10秒前
万能图书馆应助小正采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
微糖应助科研通管家采纳,获得10
10秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093