Unveiling the mechanical response and accommodation mechanism of pre-rolled AZ31 magnesium alloy under high-speed impact loading

材料科学 晶体孪晶 动态再结晶 剪切带 变形机理 打滑(空气动力学) 镁合金 变形(气象学) 应变率 粒度 冶金 微观结构 分离式霍普金森压力棒 变形带 复合材料 剪切(地质) 层错能 电子背散射衍射 热加工 物理 热力学
作者
Xiao Liu,Hui Yang,Biwu Zhu,Yuanzhi Wu,Wenhui Liu,Changping Tang
出处
期刊:Journal of Magnesium and Alloys [Elsevier]
卷期号:10 (4): 1096-1108 被引量:57
标识
DOI:10.1016/j.jma.2021.07.030
摘要

Split Hopkinson pressure bar (SHPB) tests were conducted on pre-rolled AZ31 magnesium alloy at 150–350 ℃ with strain rates of 2150s-1, 3430s-1 and 4160s-1. The mechanical response, microstructural evolution and accommodation mechanism of the pre-rolled AZ31 magnesium alloy under high-speed impact loading were investigated. The twin and shear band are prevailing at low temperature, and the coexistence of twins and recrystallized grains is the dominant microstructure at medium temperature, while at high temperature, dynamic recrystallization (DRX) is almost complete. The increment of temperature reduces the critical condition difference between twinning and DRX, and the recrystallized temperature decreases with increasing strain rate. The mechanical response is related to the competition among the shear band strengthen, the twin strengthen and the fine grain strengthen and determined by the prevailing grain structure. The fine grain strengthen could compensate soften caused by the temperature increase and the reduction of twin and shear band. During high-speed deformation, different twin variants, introduced by pre-rolling, induce different deformation mechanism to accommodate plastic deformation and are in favor for non-basal slip. At low temperature, the high-speed deformation is achieved by twinning, dislocation slip and the following deformation shear band at different deformation stages. At high temperature, the high-speed deformation is realized by twinning and dislocation slip of early deformation stage, transition shear band of medium deformation stage and DRX of final deformation stage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英俊的铭应助清河聂氏采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
Hello应助keyanniniz采纳,获得10
2秒前
swall5w完成签到,获得积分10
2秒前
4秒前
4秒前
魔丸学医完成签到,获得积分10
4秒前
科研通AI6应助吱吱采纳,获得10
4秒前
99完成签到,获得积分10
5秒前
Reborn发布了新的文献求助10
6秒前
6秒前
SYX完成签到,获得积分10
6秒前
大模型应助红朱古力酒采纳,获得10
6秒前
拼搏绿柳完成签到,获得积分0
7秒前
霞霞子完成签到 ,获得积分10
7秒前
美少女完成签到,获得积分10
7秒前
非少发布了新的文献求助10
8秒前
8秒前
烟熏柿子完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
宙船关注了科研通微信公众号
9秒前
炙热念双完成签到,获得积分10
10秒前
领导范儿应助碎碎采纳,获得10
10秒前
文艺的断天完成签到,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
Reborn完成签到,获得积分10
13秒前
yanyan完成签到,获得积分10
13秒前
13秒前
黄兆强发布了新的文献求助10
14秒前
15秒前
dd发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666928
求助须知:如何正确求助?哪些是违规求助? 4883518
关于积分的说明 15118330
捐赠科研通 4825864
什么是DOI,文献DOI怎么找? 2583597
邀请新用户注册赠送积分活动 1537760
关于科研通互助平台的介绍 1495956