Emotion recognition using time-frequency ridges of EEG signals based on multivariate synchrosqueezing transform

模式识别(心理学) 语音识别 计算机科学 人工智能 脑电图 时频分析 信号(编程语言) 瞬时相位 光谱图 信号处理
作者
Ahmet Can Mert,Hasan Hüseyin Çelik
出处
期刊:Biomedizinische Technik [De Gruyter]
卷期号:66 (4): 345-352
标识
DOI:10.1515/bmt-2020-0295
摘要

The feasibility of using time-frequency (TF) ridges estimation is investigated on multi-channel electroencephalogram (EEG) signals for emotional recognition. Without decreasing accuracy rate of the valence/arousal recognition, the informative component extraction with low computational cost will be examined using multivariate ridge estimation. The advanced TF representation technique called multivariate synchrosqueezing transform (MSST) is used to obtain well-localized components of multi-channel EEG signals. Maximum-energy components in the 2D TF distribution are determined using TF-ridges estimation to extract instantaneous frequency and instantaneous amplitude, respectively. The statistical values of the estimated ridges are used as a feature vector to the inputs of machine learning algorithms. Thus, component information in multi-channel EEG signals can be captured and compressed into low dimensional space for emotion recognition. Mean and variance values of the five maximum-energy ridges in the MSST based TF distribution are adopted as feature vector. Properties of five TF-ridges in frequency and energy plane (e.g., mean frequency, frequency deviation, mean energy, and energy deviation over time) are computed to obtain 20-dimensional feature space. The proposed method is performed on the DEAP emotional EEG recordings for benchmarking, and the recognition rates are yielded up to 71.55, and 70.02% for high/low arousal, and high/low valence, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shawn发布了新的文献求助10
刚刚
刚刚
李爱国应助Sanmo采纳,获得10
刚刚
岁月神偷发布了新的文献求助10
刚刚
雷雷完成签到,获得积分10
1秒前
菜了完成签到,获得积分10
1秒前
斯文败类应助景行采纳,获得10
2秒前
NexusExplorer应助yyy采纳,获得10
2秒前
2秒前
丘比特应助杨怂怂采纳,获得10
2秒前
4秒前
4秒前
lc完成签到,获得积分10
4秒前
风中冰香应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
彼岸完成签到,获得积分10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
Orange应助junru采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
Zx_1993应助科研通管家采纳,获得10
5秒前
dyuguo3完成签到 ,获得积分10
5秒前
ding应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
Raven应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402319
求助须知:如何正确求助?哪些是违规求助? 4520881
关于积分的说明 14082899
捐赠科研通 4434954
什么是DOI,文献DOI怎么找? 2434495
邀请新用户注册赠送积分活动 1426678
关于科研通互助平台的介绍 1405415