Emotion recognition using time-frequency ridges of EEG signals based on multivariate synchrosqueezing transform

模式识别(心理学) 语音识别 计算机科学 人工智能 脑电图 时频分析 信号(编程语言) 瞬时相位 光谱图 信号处理
作者
Ahmet Can Mert,Hasan Hüseyin Çelik
出处
期刊:Biomedizinische Technik [De Gruyter]
卷期号:66 (4): 345-352
标识
DOI:10.1515/bmt-2020-0295
摘要

The feasibility of using time-frequency (TF) ridges estimation is investigated on multi-channel electroencephalogram (EEG) signals for emotional recognition. Without decreasing accuracy rate of the valence/arousal recognition, the informative component extraction with low computational cost will be examined using multivariate ridge estimation. The advanced TF representation technique called multivariate synchrosqueezing transform (MSST) is used to obtain well-localized components of multi-channel EEG signals. Maximum-energy components in the 2D TF distribution are determined using TF-ridges estimation to extract instantaneous frequency and instantaneous amplitude, respectively. The statistical values of the estimated ridges are used as a feature vector to the inputs of machine learning algorithms. Thus, component information in multi-channel EEG signals can be captured and compressed into low dimensional space for emotion recognition. Mean and variance values of the five maximum-energy ridges in the MSST based TF distribution are adopted as feature vector. Properties of five TF-ridges in frequency and energy plane (e.g., mean frequency, frequency deviation, mean energy, and energy deviation over time) are computed to obtain 20-dimensional feature space. The proposed method is performed on the DEAP emotional EEG recordings for benchmarking, and the recognition rates are yielded up to 71.55, and 70.02% for high/low arousal, and high/low valence, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
Owen应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
han应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
养恩应助科研通管家采纳,获得10
1秒前
卡卡发布了新的文献求助20
1秒前
1秒前
1秒前
烂萝卜完成签到,获得积分10
1秒前
Gong完成签到,获得积分10
1秒前
将1发布了新的文献求助10
2秒前
PANYIAO完成签到,获得积分10
3秒前
3秒前
蒙多完成签到,获得积分20
3秒前
Chuya发布了新的文献求助10
3秒前
科研通AI5应助开心的弱采纳,获得30
3秒前
岁月轮回发布了新的文献求助20
3秒前
4秒前
支妙完成签到,获得积分10
4秒前
赘婿应助健忘的初翠采纳,获得80
5秒前
5秒前
6秒前
张豪完成签到,获得积分10
7秒前
jun完成签到 ,获得积分10
7秒前
搜集达人应助Zz采纳,获得10
7秒前
冲浪男孩226完成签到 ,获得积分10
8秒前
8秒前
秋季发布了新的文献求助10
8秒前
bb完成签到,获得积分10
8秒前
8秒前
科研通AI5应助silentJeremy采纳,获得30
9秒前
菜菜完成签到 ,获得积分10
9秒前
9秒前
香蕉觅云应助梦梦采纳,获得10
10秒前
安的沛白完成签到 ,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581318
求助须知:如何正确求助?哪些是违规求助? 3150873
关于积分的说明 9485288
捐赠科研通 2852692
什么是DOI,文献DOI怎么找? 1568241
邀请新用户注册赠送积分活动 734562
科研通“疑难数据库(出版商)”最低求助积分说明 720703