Synergism between CAR-T Cells and a Personalized Tumor Vaccine in Hematological Malignances

嵌合抗原受体 CD19 抗原 免疫学 癌症研究 肿瘤抗原 医学 免疫疗法 免疫系统
作者
Giulia Cheloni,Marzia Capelletti,Daniela Torres,Poorva Bindal,Jessica J. Liegel,Dina Stroopinsky,Lina Bisharat,Maryam Rahimian,Seo Yeon Yoo,Michelle E. Hauser,Anita G. Koshy,Kenel Dufort,John G. Clohessy,Donald Küfe,Maria Themeli,Jacalyn Rosenblatt,Michel Sadelain,David Avigan
出处
期刊:Blood [American Society of Hematology]
卷期号:138 (Supplement 1): 737-737
标识
DOI:10.1182/blood-2021-150307
摘要

Abstract Background: CAR-T cells are a tremendous breakthrough in the treatment of certain type of blood cancer, demonstrating impressive and durable responses. However, mechanisms of resistance and relapse have been reported. Mechanisms contributing to relapse after CAR-T therapy include the downregulation of the CAR-T target antigen and the rapid extinguishing of CAR-T cells. We have developed a personalized cancer vaccine whereby patient derived tumor cells are fused to autologous dendritic cells (DC). DC/tumor vaccine induces a broad anti-tumor immunity capable of preventing relapse but may not be effective in patients with advanced disease. Aims: We sought to overcome relapse and resistance to CAR-T therapy to improve the current response rate to CAR-T cells. To this end, we combined CAR-T cells treatment with our personalized DC/tumor vaccine. We postulated that the DC/tumor vaccine would demonstrate synergy with CAR-T cells in a setting where CAR-T cells reduce the bulky disease and the fusion vaccine prevents relapse by expanding CAR-T cells and tumor antigen specific lymphocytes. Methods: To investigate the effects of the CAR-T/fusion vaccine combination, we used the A20 murine B-cell lymphoma model. Syngeneic T cells were obtained from BALB/c mice and retrovirally transduced with a second-generation CAR construct composed of an antigen binding domain that recognizes murine CD19, the CD3ζ domain, 4-1BB as costimulatory molecule and GFP (m19BBz-GFP). GFP expression was used to assess gene-transfer efficiency and monitor the CAR-transduced T cells. The DC/tumor vaccine was obtained by PEG-mediated fusions of A20 cells and BALB/c DC. In the in vitro experiments, T cells transduced with the m19BBz-GFP CAR or non-transduced T cells were co-cultured in the presence or the absence of the DC/A20 vaccine for 3 days. Tumor killing was measured by quantifying Firefly luciferase activity (WT A20) or Renilla luciferase activity (CD19- A20). Vaccine was removed before starting the killing assay. In the in vivo experiment, B-cell lymphoma was induced in BALB/c mice by tail vein injection of A20 cells. The mice were lymphodepleted and treated with m19BBz-GFP CAR-T. The mice were then subcutaneous injected with the DC/A20 fusion vaccine or with PBS (control group). CD8+ T-cells specific for the A20 idiotype epitope were quantified by MHC Class I tetramer analysis. Results: In vitro co-culture of CAR-T cells and DC/A20 vaccine induced a memory-like CAR-T phenotype and strongly improved CAR-T persistence (measured as % of GFP+ T cells in culture). These results were confirmed in vivo where increased CAR-T percentage was observed in the bone marrow and spleen of vaccinated mice with respect to the unvaccinated control group. Moreover, in the vaccinated mice we detected CD8+ T-cells specific for the A20 idiotype epitope demonstrating the expansion of tumor-specific lymphocytes in response to the fusion vaccine. To assess whether the vaccine-induced persistence of CAR-T cells was translated in a higher tumor killing capacity, we performed an in vitro killing assay. To mimic the presence of CD19- clones in the tumor bulk, we used a mixture of WT A20 and CD19-A20 as CAR-T target cells. Enhanced killing capacity against CD19+ tumors was induced by education of the CAR-T with the vaccine. No effects on the CAR-T killing capacity against CD19- A20 were elicited by the fusion vaccine. However, when the same killing assay was performed using as effector cells a mixture of CAR-T and naïve T cells or a mixture of CAR-T and vaccine-educated T cells, we observed that the addition of vaccine-educated T cell to the CAR-T, strongly reduced both A20 WT and A20 CD19- in the cultures. Thus, vaccine-educated T cells are able to kill tumor cells independently from the presence or the absence of the CAR-T target antigen on the tumor. Conclusions: The combination of CAR-T and DC/tumor vaccine, increasing the persistence of CAR-T cells and evoking a polyclonal T cell response against tumor antigens in the non-CAR-transduced T cells, may represent a novel therapeutic strategy to overcame therapeutic resistance and improve current response rate to CAR-T therapy. Disclosures Capelletti: Caris Life Sciences: Current Employment. Stroopinsky: The Blackstone Group: Consultancy. Kufe: REATA: Consultancy, Current equity holder in publicly-traded company; Genus Oncology: Current equity holder in publicly-traded company; Hillstream BioPharma: Current equity holder in publicly-traded company; Canbas: Consultancy. Themeli: Fate Therapeutics: Patents & Royalties. Rosenblatt: Attivare Therapeutics: Consultancy; Imaging Endpoints: Consultancy; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Parexel: Consultancy; Wolters Kluwer Health: Consultancy, Patents & Royalties; Bristol-Myers Squibb: Research Funding. Sadelain: Minerva Biotechnologies: Patents & Royalties; Juno Therapeutics: Patents & Royalties; Fate Therapeutics: Other: Provision of Services (uncompensated), Patents & Royalties; Mnemo Therapeutics: Patents & Royalties; Takeda Pharmaceuticals: Other: Provision of Services, Patents & Royalties; Ceramedix: Patents & Royalties; NHLBI Gene Therapy Resource Program: Other: Provision of Services (uncompensated); St. Jude Children's Research Hospital: Other: Provision of Services; Atara Biotherapeutics: Patents & Royalties. Avigan: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Research Funding; Kite Pharma: Consultancy, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees; Partner Tx: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Aviv MedTech Ltd: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Legend Biotech: Membership on an entity's Board of Directors or advisory committees; Chugai: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Parexcel: Consultancy; Takeda: Consultancy; Sanofi: Consultancy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助皮质醇采纳,获得20
1秒前
李七七发布了新的文献求助10
3秒前
自由的雪完成签到 ,获得积分10
4秒前
稚气满满完成签到,获得积分10
5秒前
帅气书白完成签到 ,获得积分10
6秒前
言成完成签到 ,获得积分10
8秒前
8秒前
刘柳完成签到 ,获得积分10
8秒前
Stageruner完成签到,获得积分10
8秒前
nonoNOSHEEP完成签到,获得积分10
13秒前
14秒前
VV发布了新的文献求助10
15秒前
无私尔风完成签到,获得积分10
15秒前
15秒前
HollidayLee完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
19秒前
19秒前
奥沙利楠发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
周同学发布了新的文献求助10
22秒前
张天翔发布了新的文献求助10
23秒前
老实的大楚完成签到,获得积分10
23秒前
NexusExplorer应助甜甜凡蕾采纳,获得10
25秒前
活力雁枫发布了新的文献求助10
26秒前
feng完成签到,获得积分10
27秒前
小二郎应助lalala采纳,获得10
28秒前
小蘑菇应助袁妞妞采纳,获得10
28秒前
周同学完成签到,获得积分10
28秒前
Cc关闭了Cc文献求助
29秒前
29秒前
懵懂的紫萍完成签到 ,获得积分10
30秒前
研友_ZAxX6n完成签到,获得积分10
30秒前
密密麻麻M完成签到,获得积分10
31秒前
31秒前
包凡之发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161200
求助须知:如何正确求助?哪些是违规求助? 2812600
关于积分的说明 7895715
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316018
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112