生物
基因
非生物胁迫
基因家族
非生物成分
基因组
遗传学
转录组
棉属
植物
基因表达
古生物学
作者
Faiza Ali,Yonghui Li,Fuguang Li,Zhi Wang
标识
DOI:10.1016/j.ijbiomac.2021.10.079
摘要
Cystathionine β-synthase (CBS) domains containing proteins (CDCPs) form a large family and play roles in development via regulation of the thioredoxin system as well as abiotic and biotic stress responses of plant. However, the comprehensive study of CBS genes remained elusive in cotton. Here, we identified 237 CBS genes in 11 plant species and the phylogenetic analysis categorized CBS genes into four groups. Whole-genome or segmental with dispersed duplication events contributed to GhCBS gene family expansion. Moreover, orthologous/paralogous genes among three cotton species (G. hirsutum, G. arboreum, and G. raimondii) were detected from the syntenic map among eight plant species. Strong purifying selection for dicotyledonous and monocotyledonous CBS genes, and cis-elements related to plant growth and development, abiotic and hormonal response were observed. Transcriptomic data and qRT-PCR validation of 12 GhCBS genes indicated their critical role in ovule development as most of the genes showed high enrichment. Further, some of GhCBS (GhCBS5, GhCBS16, GhCBS17, GhCBS24, GhCBS25, GhCBS26, and GhCBS52) genes were regulated under various abiotic and hormonal treatments for different time points and involve in ovule and fiber development which provided key genes for future cotton breeding programs. In addition, transgenic tobacco plants overexpressing GhCBS4 transiently exhibited higher water and chlorophyll content indicating improved tolerance toward drought stress. Overall, this study provides the characterization of GhCBS genes for plant growth, abiotic and hormonal stresses, thereby, intimating their significance in cotton molecular breeding for resistant cultivars.
科研通智能强力驱动
Strongly Powered by AbleSci AI