Shipment Policies for Products with Fixed Shelf Lives: Impact on Profits and Waste

背景(考古学) 供应链 产品(数学) 订单(交换) 启发式 时间范围 业务 相关性(法律) 运筹学 到期日期 计算机科学 集合(抽象数据类型) 随机规划 经济 运营管理 产业组织 营销 工程类 数学 数学优化 财务 人工智能 古生物学 生物 食品科学 政治学 化学 程序设计语言 法学 几何学
作者
Arzum Akkaş,Dorothée Honhon
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (3): 1611-1629 被引量:55
标识
DOI:10.1287/msom.2021.1018
摘要

Problem definition: Our research is motivated by the product expiration problem in consumer packaged goods retailing, which creates substantial landfill waste and drains firm profits. We analyze shipment policies (i.e., the rules to determine the quantity and age composition of inventory to ship from a warehouse to a retail location) and their impact on profits and waste. Academic/practical relevance: The same firm often bears the cost of expiration at the warehouse and the retail store, which is why the problem necessitates a supply chain perspective. The ship oldest first (SOF) policy (commonly referred to as first in, first out) is advocated by industry experts to manage product shelf lives. Although its optimality in a single location is well established in the literature, it has not been studied in the context of a two-stage supply chain. Methodology: We conduct empirical analysis on a real-life data set to motivate the relevance of our problem. Then, we formulate an infinite horizon dynamic programming problem with stochastic demand for which we obtain analytical and numerical results. Results: The SOF policy is found to always minimize waste at the warehouse and total waste (warehouse and retail level combined) and under certain practically unlikely conditions, to maximize profits. However, in most practical applications, it is suboptimal, and the optimal policy is shown to have a complex structure. We analyze deterministic and myopic versions of our problem in order to generate insights on the trade-off between the issuing cost and the expiration cost. Then, we develop heuristic policies based on the myopic analysis of the problem, which are shown to perform well in terms of profits, waste, and product freshness; in our numerical analysis, the best such heuristic yields a median optimality gap of 9.5% versus 21% for SOF, pantry life of 69% versus 56% for SOF, and retail waste of 4% versus 10% for SOF. Managerial implications: The SOF policy is shown to generate high waste at the retail store, where waste is more likely to be disposed of at landfills as opposed to being donated; therefore, it may have an adverse impact on the environment. Our results also show that it is not effective at managing shelf lives in the supply chain, contrary to what practitioners argue, as evidenced by poor pantry life leading to excessive waste at the household level. Our analysis also questions the value of flow-through stocking systems to facilitate SOF as we show that firms can gain much more from improving their issuing policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助strongfrog采纳,获得10
刚刚
科研通AI6应助清秀送终采纳,获得10
1秒前
1秒前
1秒前
1秒前
CipherSage应助TearMarks采纳,获得10
1秒前
silin完成签到,获得积分10
1秒前
小豆包完成签到,获得积分20
2秒前
xttju2014发布了新的文献求助10
2秒前
2秒前
super完成签到,获得积分20
3秒前
3秒前
Ak完成签到,获得积分0
3秒前
田小班发布了新的文献求助10
4秒前
Irene发布了新的文献求助10
4秒前
认真日记本完成签到 ,获得积分10
4秒前
www发布了新的文献求助10
4秒前
5秒前
桐桐应助哈哈哈哈哈哈采纳,获得10
5秒前
李小莉0419发布了新的文献求助10
5秒前
Ava应助MC采纳,获得10
6秒前
baobaot发布了新的文献求助30
6秒前
6秒前
承乐应助小豆包采纳,获得10
6秒前
英姑应助小豆包采纳,获得10
6秒前
秋寒完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
斯文败类应助mikiisme采纳,获得10
8秒前
algain完成签到,获得积分10
8秒前
Wizzzzzzzy发布了新的文献求助10
8秒前
necos发布了新的文献求助10
11秒前
11秒前
12秒前
fmx完成签到,获得积分10
12秒前
残剑月发布了新的文献求助10
13秒前
13秒前
weihongjuan发布了新的文献求助10
13秒前
帅气的馒头应助酷炫初雪采纳,获得10
13秒前
janette完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836