材料科学
微观结构
焊接
合金
冶金
融合
电子背散射衍射
复合材料
语言学
哲学
作者
J.P. Oliveira,Jiajia Shen,Zhi Zeng,Jeong Min Park,Yeon Taek Choi,Norbert Schell,Emad Maawad,Y. Zhou,Hyoung Seop Kim
标识
DOI:10.1016/j.scriptamat.2021.114219
摘要
In this work, laser welding of a rolled CoCrFeMnNi high entropy alloy to 316 stainless steel was performed. Defect-free joints were obtained. The microstructure evolution across the welded joints was assessed and rationalized by coupling electron microscopy, high energy synchrotron X-ray diffraction, mechanical property evaluation, and thermodynamic calculations. The fusion zone microstructure was composed of a single FCC phase, and a hardness increase at this location was observed. Such results can be attributed to the formation of a new solid solution (arising from the mixing of the two base materials). Moreover, the incorporation of carbon in the fusion zone upon melting of the stainless steel also aids in the strengthening effect observed. The welded joints presented good mechanical properties, with fracture occurring at the fusion zone. This can be ascribed to the non-favourable, i.e., large grain size, microstructure that developed at this location.
科研通智能强力驱动
Strongly Powered by AbleSci AI