计算机科学
同时定位和映射
算法
颗粒过滤器
伯努利原理
计算复杂性理论
卡尔曼滤波器
泊松分布
高斯分布
滤波器(信号处理)
计算机视觉
人工智能
数学
移动机器人
机器人
航空航天工程
工程类
物理
统计
量子力学
作者
Yu Ge,Ossi Kaltiokallio,Hyo-Won Kim,Fan Jiang,Jukka Talvitie,Mikko Valkama,Lennart Svensson,Sunwoo Kim,Henk Wymeersch
标识
DOI:10.1109/jsac.2022.3155504
摘要
Millimeter wave (mmWave) signals are useful for simultaneous localization and mapping (SLAM), due to their inherent geometric connection to the propagation environment and the propagation channel. To solve the SLAM problem, existing approaches rely on sigma-point or particle-based approximations, leading to high computational complexity, precluding real-time execution. We propose a novel low-complexity SLAM filter, based on the Poisson multi-Bernoulli mixture (PMBM) filter. It utilizes the extended Kalman (EK) first-order Taylor series based Gaussian approximation of the filtering distribution, and applies the track-oriented marginal multi-Bernoulli/Poisson (TOMB/P) algorithm to approximate the resulting PMBM as a Poisson multi-Bernoulli (PMB). The filter can account for different landmark types in radio SLAM and multiple data association hypotheses. Hence, it has an adjustable complexity/performance trade-off. Simulation results show that the developed SLAM filter can greatly reduce the computational cost, while it keeps the good performance of mapping and user state estimation.
科研通智能强力驱动
Strongly Powered by AbleSci AI