生物群
微塑料
塑料污染
生态学
生物
门
环境DNA
雷斯顿
物种丰富度
生物多样性
环境科学
细菌
遗传学
作者
Ana Luzia Lacerda,John D. Taylor,Lucas Rodrigues,Felipe Kessler,Eduardo R. Secchi,Maíra Proietti
标识
DOI:10.1016/j.scitotenv.2021.150186
摘要
The lack of information about plastic pollution in many marine regions hinders firm actions to manage human activities and mitigate their impacts. This study conducted for the first time a quali-quantitative evaluation of floating plastics and their associated biota from coastal and oceanic waters in South Brazil. Plastics were collected using a manta net, and were categorized according to their shape, size, malleability and polymer composition. Multi-marker DNA metabarcoding (16S, and 18S V4 and V9 rRNA regions) was performed to identify prokaryotes and eukaryotes associated to plastics. We found 371 likely plastic particles of several sizes, shapes and polymers, and the average concentration of plastics at the region was 4461 items.km-2 (SD ± 3914). Microplastics (0.5 - 5 mm) were dominant in most sampling stations, with fragments and lines representing the most common shapes. Diverse groups of prokaryotes (20 bacteria phyla) and eukaryotes (41 groups) were associated with plastics. Both the community composition and richness of epiplastic organisms were highly variable between individual plastics but, in general, were not influenced by plastic categories. Organisms with potential pathogenicity (e.g. Vibrio species. and Alexandrium tamarense), as well as potential plastic degraders (e.g. Ralstonia, Pseudomonas, and Alcanivorax species), were found. The information generated here is pivotal to support strategies to prevent the input and mitigate the impacts of plastics and their associated organisms on marine environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI