Derivation and external validation of a risk score for predicting HIV-associated tuberculosis to support case finding and preventive therapy scale-up: A cohort study

肺结核 医学 逻辑回归 亚临床感染 队列 耐多药结核病 人类免疫缺陷病毒(HIV) 队列研究 内科学 免疫学 结核分枝杆菌 病理
作者
Andrew F. Auld,Andrew D. Kerkhoff,Yasmeen Hanifa,Robin Wood,Salome Charalambous,Yuliang Liu,Tefera Agizew,Anikie Mathoma,Rosanna Boyd,Anand Date,Ray W. Shiraishi,George Bicego,Unami Mathebula-Modongo,Heather Alexander,Christopher Serumola,Goabaone Rankgoane-Pono,Pontsho Pono,Alyssa Finlay,James C. Shepherd,Tedd V. Ellerbrock,Alison D. Grant,Katherine Fielding
出处
期刊:PLOS Medicine [Public Library of Science]
卷期号:18 (9): e1003739-e1003739 被引量:8
标识
DOI:10.1371/journal.pmed.1003739
摘要

Background Among people living with HIV (PLHIV), more flexible and sensitive tuberculosis (TB) screening tools capable of detecting both symptomatic and subclinical active TB are needed to (1) reduce morbidity and mortality from undiagnosed TB; (2) facilitate scale-up of tuberculosis preventive therapy (TPT) while reducing inappropriate prescription of TPT to PLHIV with subclinical active TB; and (3) allow for differentiated HIV–TB care. Methods and findings We used Botswana XPRES trial data for adult HIV clinic enrollees collected during 2012 to 2015 to develop a parsimonious multivariable prognostic model for active prevalent TB using both logistic regression and random forest machine learning approaches. A clinical score was derived by rescaling final model coefficients. The clinical score was developed using southern Botswana XPRES data and its accuracy validated internally, using northern Botswana data, and externally using 3 diverse cohorts of antiretroviral therapy (ART)-naive and ART-experienced PLHIV enrolled in XPHACTOR, TB Fast Track (TBFT), and Gugulethu studies from South Africa (SA). Predictive accuracy of the clinical score was compared with the World Health Organization (WHO) 4-symptom TB screen. Among 5,418 XPRES enrollees, 2,771 were included in the derivation dataset; 67% were female, median age was 34 years, median CD4 was 240 cells/μL, 189 (7%) had undiagnosed prevalent TB, and characteristics were similar between internal derivation and validation datasets. Among XPHACTOR, TBFT, and Gugulethu cohorts, median CD4 was 400, 73, and 167 cells/μL, and prevalence of TB was 5%, 10%, and 18%, respectively. Factors predictive of TB in the derivation dataset and selected for the clinical score included male sex (1 point), ≥1 WHO TB symptom (7 points), smoking history (1 point), temperature >37.5°C (6 points), body mass index (BMI) <18.5kg/m 2 (2 points), and severe anemia (hemoglobin <8g/dL) (3 points). Sensitivity using WHO 4-symptom TB screen was 73%, 80%, 94%, and 94% in XPRES, XPHACTOR, TBFT, and Gugulethu cohorts, respectively, but increased to 88%, 87%, 97%, and 97%, when a clinical score of ≥2 was used. Negative predictive value (NPV) also increased 1%, 0.3%, 1.6%, and 1.7% in XPRES, XPHACTOR, TBFT, and Gugulethu cohorts, respectively, when the clinical score of ≥2 replaced WHO 4-symptom TB screen. Categorizing risk scores into low (<2), moderate (2 to 10), and high-risk categories (>10) yielded TB prevalence of 1%, 1%, 2%, and 6% in the lowest risk group and 33%, 22%, 26%, and 32% in the highest risk group for XPRES, XPHACTOR, TBFT, and Gugulethu cohorts, respectively. At clinical score ≥2, the number needed to screen (NNS) ranged from 5.0 in Gugulethu to 11.0 in XPHACTOR. Limitations include that the risk score has not been validated in resource-rich settings and needs further evaluation and validation in contemporary cohorts in Africa and other resource-constrained settings. Conclusions The simple and feasible clinical score allowed for prioritization of sensitivity and NPV, which could facilitate reductions in mortality from undiagnosed TB and safer administration of TPT during proposed global scale-up efforts. Differentiation of risk by clinical score cutoff allows flexibility in designing differentiated HIV–TB care to maximize impact of available resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
3秒前
司徒涟妖完成签到,获得积分10
4秒前
LAlalal完成签到,获得积分10
4秒前
XJ完成签到,获得积分10
7秒前
开心的谷兰完成签到,获得积分10
7秒前
诸天蓉完成签到,获得积分10
8秒前
阔达的傲MUMU完成签到 ,获得积分10
10秒前
10秒前
筱星完成签到,获得积分10
11秒前
m30完成签到,获得积分10
12秒前
娇气的天亦完成签到 ,获得积分10
14秒前
丁逍遥发布了新的文献求助10
14秒前
hwl26完成签到,获得积分10
15秒前
林读书发布了新的文献求助10
15秒前
细嗅蔷薇完成签到,获得积分10
16秒前
ryota完成签到,获得积分10
17秒前
lyp完成签到 ,获得积分10
17秒前
火星上惜天完成签到 ,获得积分10
18秒前
20秒前
hehuan0520完成签到,获得积分10
20秒前
张宁波完成签到,获得积分10
20秒前
dm完成签到 ,获得积分10
23秒前
JevonCheung完成签到 ,获得积分10
24秒前
龙在天涯完成签到,获得积分10
26秒前
jjjwln完成签到,获得积分10
27秒前
黑糖珍珠完成签到 ,获得积分10
28秒前
Davidfly20完成签到,获得积分10
28秒前
phoenix001完成签到,获得积分0
29秒前
having完成签到,获得积分10
29秒前
30秒前
tuzi完成签到,获得积分10
31秒前
笨蛋没烦恼完成签到 ,获得积分10
31秒前
HF完成签到,获得积分10
31秒前
傅寒天完成签到,获得积分10
34秒前
在水一方完成签到 ,获得积分10
34秒前
ryota发布了新的文献求助10
36秒前
Clarissa完成签到,获得积分10
36秒前
37秒前
谢家宝树完成签到,获得积分10
39秒前
40秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413470
求助须知:如何正确求助?哪些是违规求助? 3015836
关于积分的说明 8872004
捐赠科研通 2703591
什么是DOI,文献DOI怎么找? 1482357
科研通“疑难数据库(出版商)”最低求助积分说明 685250
邀请新用户注册赠送积分活动 679988