Decision support system for adaptive sourcing and inventory management in small- and medium-sized enterprises

决策支持系统 利用 供应链 计算机科学 原始数据 战略式采购 业务 订单(交换) 生产(经济) 运筹学 战略规划 营销 数据挖掘 工程类 程序设计语言 经济 宏观经济学 财务 战略财务管理 计算机安全
作者
Siravat Teerasoponpong,Apichat Sopadang
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:73: 102226-102226 被引量:57
标识
DOI:10.1016/j.rcim.2021.102226
摘要

Elevated business uncertainties and competition over recent years have caused changes to the data-driven supply chain management of sourcing and inventories across industries. However, only large-sized enterprises have the resources to harness data for aiding their decision-making and planning. By contrast, small- and medium-sized enterprises (SMEs) commonly have limited resources and knowledge, which affects their ability to collect and utilize data. Thus, it is a challenge for them to implement advanced decision support tools to mitigate the effects of market uncertainties. This paper proposes a decision support system (DSS) for sourcing and inventory management, with the aims of helping SMEs compile and exploit data, and supporting their decisions under business ambiguities. The DSS was developed using a simulation-optimization approach by incorporating an artificial neural network and a genetic algorithm for problem representation and optimizing decision support solutions. The exploitation of observational and empirical data reduces the burden of data compilation obtained from unorganized data sources across SME operations. Further, uncertainty factors such as raw material demand, price, and supply lead time were considered. When implemented in a medium-sized food industry company, the DSS can provide decision support solutions that integrate the selection of recommended suppliers and optimal order quantities. It can also help decision-makers to shape their inventory management policies under uncertain raw material demands, while also considering service levels, sales promotions, lead times, and material availability from multiple suppliers. Consequently, implementation of the DSS helped to reduce the total purchased raw material costs by an average of 51.62% and reduced the order interval and on-hand inventory costs by an average of 54.24%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助萝卜脚踝采纳,获得10
刚刚
2秒前
天天快乐应助失眠的耳机采纳,获得10
2秒前
FashionBoy应助哼哼哈嘿采纳,获得10
4秒前
4秒前
干雅柏发布了新的文献求助10
5秒前
飘逸千万发布了新的文献求助10
5秒前
5秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得30
6秒前
Orange应助科研通管家采纳,获得20
6秒前
xiaokang123应助科研通管家采纳,获得10
6秒前
6秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
磷钼酸奎琳完成签到,获得积分10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
xiaokang123应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
xiaokang123应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
虚幻大树发布了新的文献求助10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
xiaokang123应助科研通管家采纳,获得10
7秒前
7秒前
负责蜜蜂发布了新的文献求助10
7秒前
8秒前
Gary发布了新的文献求助10
9秒前
10秒前
今后应助阳阳采纳,获得10
10秒前
11秒前
无情芝麻发布了新的文献求助10
11秒前
壮观的画笔关注了科研通微信公众号
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727927
求助须知:如何正确求助?哪些是违规求助? 3272991
关于积分的说明 9979382
捐赠科研通 2988370
什么是DOI,文献DOI怎么找? 1639597
邀请新用户注册赠送积分活动 778803
科研通“疑难数据库(出版商)”最低求助积分说明 747817