Stabilizing Transition Metal Vacancy Induced Oxygen Redox by Co2+/Co3+ Redox and Sodium‐Site Doping for Layered Cathode Materials

氧化还原 价(化学) 空位缺陷 密度泛函理论 X射线吸收光谱法 过渡金属 无机化学 氧化物 材料科学 氧气 金属 化学 结晶学 阴极 吸收光谱法 氧化态 物理化学 计算化学 催化作用 有机化学 物理 量子力学 生物化学
作者
Xun‐Lu Li,Jian Bao,Zulipiya Shadike,Qinchao Wang,Xiao‐Qing Yang,Yong‐Ning Zhou,Dalin Sun,Fang Fang
出处
期刊:Angewandte Chemie [Wiley]
卷期号:60 (40): 22026-22034 被引量:79
标识
DOI:10.1002/anie.202108933
摘要

Abstract Anionic redox is an effective way to boost the energy density of layer‐structured metal‐oxide cathodes for rechargeable batteries. However, inherent rigid nature of the TMO 6 (TM: transition metals) subunits in the layered materials makes it hardly tolerate the inner strains induced by lattice glide, especially at high voltage. Herein, P2‐Na 0.8 Mg 0.13 [Mn 0.6 Co 0.2 Mg 0.07 □ 0.13 ]O 2 (□: TM vacancy) is designed that contains vacancies in TM sites, and Mg ions in both TM and sodium sites. Vacancies make the rigid TMO 6 octahedron become more asymmetric and flexible. Low valence Co 2+ /Co 3+ redox couple stabilizes the electronic structure, especially at the charged state. Mg 2+ in sodium sites can tune the interlayer spacing against O‐O electrostatic repulsion. Time‐resolved in situ X‐ray diffraction confirms that irreversible structure evolution is effectively suppressed during deep desodiation benefiting from the specific configuration. X‐ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations demonstrate that, deriving from the intrinsic vacancies, multiple local configurations of “□‐O‐□”, “Na‐O‐□”, “Mg‐O‐□” are superior in facilitating the oxygen redox for charge compensation than previously reported “Na‐O‐Mg”. The resulted material delivers promising cycle stability and rate capability, with a long voltage plateau at 4.2 V contributed by oxygen, and can be well maintained even at high rates. The strategy will inspire new ideas in designing highly stable cathode materials with reversible anionic redox for sodium‐ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖的云发布了新的文献求助10
刚刚
愤怒的狗完成签到,获得积分10
刚刚
慕青应助温婉的易梦采纳,获得10
刚刚
阿艺完成签到,获得积分10
刚刚
1秒前
科目三应助啊实打实的采纳,获得10
1秒前
hetao发布了新的文献求助10
1秒前
FashionBoy应助NXK采纳,获得10
1秒前
1秒前
点点完成签到,获得积分20
1秒前
稳重惜灵发布了新的文献求助10
2秒前
科研通AI6应助递年采纳,获得10
2秒前
Lxx发布了新的文献求助10
2秒前
He完成签到,获得积分10
3秒前
3秒前
小铃铛完成签到,获得积分10
3秒前
佳思思完成签到,获得积分10
3秒前
虚拟的小珍完成签到,获得积分10
4秒前
mmm发布了新的文献求助10
4秒前
4秒前
酷波er应助无心的复天采纳,获得10
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
点点发布了新的文献求助10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
zik应助科研通管家采纳,获得10
5秒前
zhonglv7应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
starts发布了新的文献求助10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
5秒前
Mic应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Hilda007应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
wanci应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
6秒前
guozizi应助科研通管家采纳,获得100
6秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585371
求助须知:如何正确求助?哪些是违规求助? 4669245
关于积分的说明 14775627
捐赠科研通 4617988
什么是DOI,文献DOI怎么找? 2530541
邀请新用户注册赠送积分活动 1499200
关于科研通互助平台的介绍 1467671