3D DCE-MRI Radiomic Analysis for Malignant Lesion Prediction in Breast Cancer Patients

判别式 计算机科学 人工智能 接收机工作特性 支持向量机 模式识别(心理学) 规范化(社会学) 特征选择 磁共振成像 特征(语言学) 双雷达 乳腺癌 机器学习 医学 乳腺摄影术 放射科 癌症 社会学 哲学 内科学 语言学 人类学
作者
Carmelo Militello,Leonardo Rundo,Mariangela Dimarco,Alessia Angela Maria Orlando,Ramona Woitek,Ildebrando D’Angelo,G. Russo,Tommaso Vincenzo Bartolotta
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:29 (6): 830-840 被引量:47
标识
DOI:10.1016/j.acra.2021.08.024
摘要

To develop and validate a radiomic model, with radiomic features extracted from breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) from a 1.5T scanner, for predicting the malignancy of masses with enhancement. Images were acquired using an 8-channel breast coil in the axial plane. The rationale behind this study is to show the feasibility of a radiomics-powered model that could be integrated into the clinical practice by exploiting only standard-of-care DCE-MRI with the goal of reducing the required image pre-processing (ie, normalization and quantitative imaging map generation).107 radiomic features were extracted from a manually annotated dataset of 111 patients, which was split into discovery and test sets. A feature calibration and pre-processing step was performed to find only robust non-redundant features. An in-depth discovery analysis was performed to define a predictive model: for this purpose, a Support Vector Machine (SVM) was trained in a nested 5-fold cross-validation scheme, by exploiting several unsupervised feature selection methods. The predictive model performance was evaluated in terms of Area Under the Receiver Operating Characteristic (AUROC), specificity, sensitivity, PPV and NPV. The test was performed on unseen held-out data.The model combining Unsupervised Discriminative Feature Selection (UDFS) and SVMs on average achieved the best performance on the blinded test set: AUROC = 0.725±0.091, sensitivity = 0.709±0.176, specificity = 0.741±0.114, PPV = 0.72±0.093, and NPV = 0.75±0.114.In this study, we built a radiomic predictive model based on breast DCE-MRI, using only the strongest enhancement phase, with promising results in terms of accuracy and specificity in the differentiation of malignant from benign breast lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助飞飞飞采纳,获得10
1秒前
高高浩然完成签到,获得积分10
2秒前
打打应助婷婷采纳,获得10
2秒前
roblllling发布了新的文献求助10
3秒前
青阳完成签到,获得积分10
6秒前
君君完成签到,获得积分10
7秒前
8秒前
8秒前
严仁杰发布了新的文献求助50
9秒前
LLL完成签到,获得积分10
9秒前
10秒前
脑洞疼应助Panchael采纳,获得10
11秒前
chen完成签到,获得积分10
11秒前
迷人世开完成签到,获得积分10
13秒前
飞飞飞发布了新的文献求助10
13秒前
luermei发布了新的文献求助10
14秒前
打打应助君子不器采纳,获得30
14秒前
biubiubiu发布了新的文献求助10
15秒前
roblllling完成签到,获得积分10
15秒前
蕃茄可乐完成签到,获得积分10
17秒前
科研通AI5应助YMM采纳,获得10
18秒前
Wang完成签到,获得积分10
18秒前
开心的若血完成签到,获得积分10
18秒前
上官若男应助黑妹采纳,获得10
19秒前
22秒前
oceanic完成签到 ,获得积分10
23秒前
Owen应助biubiubiu采纳,获得10
25秒前
27秒前
chen完成签到 ,获得积分10
27秒前
zzz完成签到,获得积分10
27秒前
lillian完成签到,获得积分20
28秒前
28秒前
29秒前
Persevere完成签到,获得积分10
31秒前
hcjxj完成签到,获得积分10
32秒前
32秒前
33秒前
YMM发布了新的文献求助10
33秒前
mmmst完成签到,获得积分20
34秒前
黑妹发布了新的文献求助10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740489
求助须知:如何正确求助?哪些是违规求助? 3283290
关于积分的说明 10034940
捐赠科研通 3000165
什么是DOI,文献DOI怎么找? 1646430
邀请新用户注册赠送积分活动 783550
科研通“疑难数据库(出版商)”最低求助积分说明 750411