Weakly supervised multitask learning models to identify symptom onset time of unclear-onset intracerebral hemorrhage

概化理论 医学 脑出血 集合(抽象数据类型) 回归 人工智能 内科学 统计 计算机科学 发展心理学 心理学 数学 程序设计语言 蛛网膜下腔出血
作者
Jianbo Chang,Pei Hanqi,Yi‐Hao Chen,Cheng Jiang,Hong Shang,Yuxiang Wang,Wang Xiao-ning,Zeju Ye,Xingong Wang,Fengxuan Tian,Chai Jianjun,XU Ji-jun,Zhaojian Li,Wenbin Ma,Junji Wei,Jianhua Yao,Ming Feng,Renzhi Wang
出处
期刊:International Journal of Stroke [SAGE Publishing]
卷期号:17 (7): 785-792 被引量:3
标识
DOI:10.1177/17474930211051531
摘要

Background Approximately one-third of spontaneous intracerebral hemorrhage patients did not know the onset time and were excluded from studies about time-dependent treatments for hyperacute spontaneous intracerebral hemorrhage. Aims To help clinicians explore the benefit of time-dependent treatments for unclear-onset patients, we presented artificial intelligence models to identify onset time using non-contrast computed tomography (NCCT) based on weakly supervised multitask learning (WS-MTL) structure. Methods The patients with reliable symptom onset time (strong label) or repeat CT (weak label) were included and split into training set and test set (internal and external). The WS-MTL structure utilized strong and weak labels simultaneously to improve performance. The models included three binary classification models for classifying whether NCCT acquired within 6, 8 or 12 h for different treatments measured by area under curve, and a regression model for determining the exact onset time measured by mean absolute error. The generalizability of models was also explored in comprehensive analysis. Results A total of 4004 patients with 10,780 NCCT scans were included. The performance of WS-MTL classification model showed high accuracy, and that of regression model was satisfactory in ≤6 h subgroup. In comprehensive analysis, the WS-MTL showed better performance for larger hematomas and thinner scans. And the performance improved effectively as training amounts increasing and could be improved steadily through retraining. Conclusions The WS-MTL models showed good performance and generalizability. Considering the large number of unclear-onset spontaneous intracerebral hemorrhage patients, it may be worth to integrate the WS-MTL model into clinical practice to identify the onset time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
实验好难应助HD采纳,获得10
刚刚
科研通AI5应助清新的听南采纳,获得10
1秒前
Only完成签到 ,获得积分10
2秒前
冲冲冲完成签到,获得积分10
3秒前
渡劫完成签到,获得积分10
3秒前
好人一生平安完成签到,获得积分10
4秒前
夜雨完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
友好盼波完成签到,获得积分10
6秒前
李爱国应助cai采纳,获得10
7秒前
现代的烤鸡完成签到,获得积分10
8秒前
xmyyy完成签到,获得积分10
9秒前
ZL完成签到 ,获得积分10
10秒前
xmyyy发布了新的文献求助10
10秒前
shann发布了新的文献求助100
11秒前
16秒前
闪闪青雪完成签到,获得积分10
16秒前
杂化轨道退役研究员完成签到,获得积分10
17秒前
22秒前
淡淡的白羊完成签到 ,获得积分10
23秒前
Justtry完成签到,获得积分20
27秒前
爱咋咋地完成签到 ,获得积分10
27秒前
Jun完成签到,获得积分10
29秒前
四月完成签到 ,获得积分10
29秒前
蔷薇果完成签到 ,获得积分10
30秒前
虚幻的涵柏完成签到,获得积分10
30秒前
大模型应助小李老博采纳,获得10
31秒前
清新的访冬完成签到,获得积分10
34秒前
淡然冬灵发布了新的文献求助10
35秒前
LJJ完成签到 ,获得积分10
36秒前
谭志勇爱科研完成签到 ,获得积分10
39秒前
HCKACECE完成签到 ,获得积分10
41秒前
苗广山完成签到 ,获得积分10
42秒前
就是不签名完成签到,获得积分10
42秒前
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736760
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020365
捐赠科研通 2997407
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749656