Development and internal validation of a risk prediction model for falls among older people using primary care electronic health records.

医学 风险评估 医疗急救
作者
Noman Dormosh,Martijn C. Schut,Martijn W. Heymans,Nathalie van der Velde,Ameen Abu-Hanna
出处
期刊:The Journals of Gerontology: Series A
标识
DOI:10.1093/gerona/glab311
摘要

BACKGROUND Currently used prediction tools have limited ability to identify community-dwelling older people at high risk for falls. Prediction models utilizing Electronic Heath Records (EHR) provide opportunities but up to now showed limited clinical value as risk stratification tool; because of among others the underestimation of falls prevalence. The aim of this study was to develop a fall prediction model for community-dwelling older people using a combination of structured data and free text of primary care EHR and to internally validate its predictive performance. METHODS EHR data of individuals aged 65 or over. Age, sex, history of falls, medications and medical conditions were included as potential predictors. Falls were ascertained from the free text. We employed the Bootstrap-enhanced penalized logistic regression with the least absolute shrinkage and selection operator to develop the prediction model. We used 10-fold cross-validation to internally validate the prediction strategy. Model performance was assessed in terms of discrimination and calibration. RESULTS Data of 36,470 eligible participants were extracted from the dataset. The number of participants who fell at least once was 4,778 (13.1%). The final prediction model included age, sex, history of falls, two medications and five medical conditions. The model had a median area under the receiver operating curve of 0.705 (IQR 0.700-0.714) . CONCLUSIONS Our prediction model to identify older people at high risk for falls achieved fair discrimination, and had reasonable calibration. It can be applied in clinical practice as it relies on routinely collected variables and does not require mobility assessment tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听书雁发布了新的文献求助10
刚刚
英姑应助沙xiaohan采纳,获得10
刚刚
棉花糖完成签到,获得积分10
刚刚
yatuitui完成签到,获得积分10
刚刚
warmhelium发布了新的文献求助10
1秒前
坚定尔白完成签到,获得积分10
1秒前
猫好好发布了新的文献求助10
2秒前
大力信封完成签到,获得积分10
2秒前
昵称发布了新的文献求助10
2秒前
2秒前
2秒前
周雪峰完成签到,获得积分10
3秒前
zain完成签到 ,获得积分10
3秒前
汉堡包应助roy_chiang采纳,获得10
5秒前
科研通AI5应助Nyxia采纳,获得10
5秒前
大葱发布了新的文献求助10
6秒前
情怀应助warmhelium采纳,获得10
6秒前
真水无香123应助饱满懿轩采纳,获得10
6秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
VDC应助科研通管家采纳,获得30
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
苏卿应助科研通管家采纳,获得10
7秒前
7秒前
pluto应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
CodeCraft应助动听书雁采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
苏卿应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246